Enhancement of tetragonal anisotropy and stabilisation of the tetragonal phase by Bi/Mn-double-doping in BaTiO3 ferroelectric ceramics

被引:0
|
作者
Hisato Yabuta
Hidenori Tanaka
Tatsuo Furuta
Takayuki Watanabe
Makoto Kubota
Takanori Matsuda
Toshihiro Ifuku
Yasuhiro Yoneda
机构
[1] R&D Headquarters,
[2] Canon Inc.,undefined
[3] Reaction Dynamics Research Center,undefined
[4] Japan Atomic Energy Agency (JAEA),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+.
引用
收藏
相关论文
共 50 条
  • [1] Enhancement of tetragonal anisotropy and stabilisation of the tetragonal phase by Bi/Mn-doubledoping in BaTiO3 ferroelectric ceramics
    Yabuta, Hisato
    Tanaka, Hidenori
    Furuta, Tatsuo
    Watanabe, Takayuki
    Kubota, Makoto
    Matsuda, Takanori
    Ifuku, Toshihiro
    Yoneda, Yasuhiro
    SCIENTIFIC REPORTS, 2017, 7
  • [2] THEORY OF OPTICAL ANISOTROPY AND SPONTANEOUS POLARIZATION IN THE TETRAGONAL PHASE OF BATIO3
    KHATIB, D
    FERROELECTRICS LETTERS SECTION, 1994, 18 (5-6) : 173 - 179
  • [3] Subsurface State Bilayer in Tetragonal Ferroelectric BaTiO3
    Chen, Junhao
    Su, Xin
    Yuan, Tao
    Tang, Wenbin
    Ding, Shicheng
    Shi, Yan
    Li, Fangming
    Chen, Kai
    Yu, Yang
    Zhang, Hongchao
    Zhu, Siyuan
    Yuan, Guoliang
    Lu, Jian
    ADVANCED MATERIALS INTERFACES, 2025,
  • [4] Dielectric investigations in nanostructured tetragonal BaTiO3 ceramics
    Silveira, L. G. D.
    Alves, M. F. S.
    Cotica, L. F.
    Gotardo, R. A. M.
    Nascimento, W. J.
    Garcia, D.
    Eiras, J. A.
    Santos, I. A.
    MATERIALS RESEARCH BULLETIN, 2013, 48 (05) : 1772 - 1777
  • [5] Structural Transformation of Hexagonal (0001)BaTiO3 Ceramics to Tetragonal (111)BaTiO3 Ceramics
    Watanabe, Takayuki
    Shimada, Mikio
    Aiba, Toshiaki
    Yabuta, Hisato
    Miura, Kaoru
    Oka, Kengo
    Azuma, Masaki
    Wada, Satoshi
    Kumada, Nobuhiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (09)
  • [6] Evolution of ferroelectric domain patterns in BaTiO3 at the orthorhombic ⇆ tetragonal phase transition
    Limboeck, T.
    Soergel, E.
    APPLIED PHYSICS LETTERS, 2014, 105 (15)
  • [7] Enhancement of piezoelectric and ferroelectric properties of BaTiO3 ceramics by aluminum doping
    Ali, Ahmed I.
    Ahn, Chang Won
    Kim, Yong Soo
    CERAMICS INTERNATIONAL, 2013, 39 (06) : 6623 - 6629
  • [8] First-principles study on tetragonal BaTiO3 ferroelectric
    Xue, WD
    Chen, ZY
    Yang, C
    Li, YR
    ACTA PHYSICA SINICA, 2005, 54 (02) : 857 - 862
  • [9] MOBILITY ANISOTROPY IN TETRAGONAL BATIO3 IN SMALL POLARON MODEL
    GIRSHBER.YG
    BURSIAN, EV
    GRUSHEVS.YA
    FERROELECTRICS, 1973, 6 (1-2) : 53 - 55
  • [10] Ferroelectric and optical properties in the 180° ferroelectric domain wall of tetragonal BaTiO3
    Chaib, H
    Grafström, S
    Otto, T
    Eng, LM
    ADVANCED ORGANIC AND INORGANIC OPTICAL MATERIALS, 2003, 5122 : 358 - 365