An extension of Matkowski’s and Wardowski’s fixed point theorems with applications to functional equations

被引:0
作者
Deepak Khantwal
U. C. Gairola
机构
[1] H.N.B. Garhwal University,Department of Mathematics
来源
Aequationes mathematicae | 2019年 / 93卷
关键词
Fixed point; Matkowski contraction; Wardowski contraction; Product space; Iterative functional equation; Bounded solution; Primary 47H10; Secondary 54H25; 39B12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a fixed point theorem for a system of maps on the finite product of metric spaces. Our result generalizes the result of Matkowski (Bull Acad Pol Sci Sér Sci Math Astron Phys 21:323–324, 1973), Cosentino and Vetro (Filomat 28(4):715–722, 2014) and Hardy and Rogers (Can Math Bull 16(2):201–206, 1973) and other results in the literature. Moreover, we have an application for a system of functional equations and an example to illustrate our result.
引用
收藏
页码:433 / 443
页数:10
相关论文
共 52 条
  • [1] Baillon JB(1993)Nonlinear hybrid contractions on product spaces Far East J. Math. Sci. 1 117-127
  • [2] Singh SL(2014)Fixed point results for Filomat 28 715-722
  • [3] Cosentino M(1976)-contractive mappings of Hardy–Rogers-type Proc. Am. Math. Soc. 55 136-139
  • [4] Vetro P(1976)A fixed point theorem for a system of multivalued transformations Demonstr. Math. 9 281-285
  • [5] Czerwik S(2003)Generalization of Edelstein’s fixed point theorem Demonstr. Math. 36 939-949
  • [6] Czerwik S(2008)Co-ordinatewise Demonstr. Math. 41 129-136
  • [7] Gairola UC(1997)-weakly commuting maps and fixed point theorem on product spaces Demonstr. Math. 30 15-24
  • [8] Jangwan PS(1995)Coincidence theorem for multi-valued and single-valued systems of transformations Demonstr. Math. 28 541-548
  • [9] Gairola UC(1973)Coincidence and fixed point theorems on product spaces Can. Math. Bull. 16 201-206
  • [10] Jangwan PS(1974)Fixed point theorems on product of compact metric spaces Ann. Pol. Math. 30 191-203