A Note on Cycle Lengths in Graphs

被引:0
|
作者
R.J. Gould
P.E. Haxell
A.D. Scott
机构
[1] Department of Mathematics and Computer Science,
[2] Emory University,undefined
[3] Atlanta,undefined
[4] GA 30322,undefined
[5] USA. e-mail: rg@mathcs.emory.edu,undefined
[6] Department of Combinatorics and Optimization,undefined
[7] University of Waterloo,undefined
[8] Waterloo,undefined
[9] Ont.,undefined
[10] N2L 3G1,undefined
[11] Canada. e-mail: pehaxell@math.uwaterloo.ca,undefined
[12] Department of Mathematics,undefined
[13] University College,undefined
[14] London,undefined
[15] WC1E 6BT,undefined
[16] UK. e-mail: scott@math.ucl.ac.uk,undefined
来源
Graphs and Combinatorics | 2002年 / 18卷
关键词
Key words. Cycle lengths, Minimum degree, Circumference;
D O I
暂无
中图分类号
学科分类号
摘要
 We prove that for every c>0 there exists a constant K = K(c) such that every graph G with n vertices and minimum degree at least cn contains a cycle of length t for every even t in the interval [4,ec(G) − K] and every odd t in the interval [K,oc(G) − K], where ec(G) and oc(G) denote the length of the longest even cycle in G and the longest odd cycle in G respectively. We also give a rough estimate of the magnitude of K.
引用
收藏
页码:491 / 498
页数:7
相关论文
共 50 条
  • [31] A Note on the Cycle Isolation Number of Graphs
    Gang Zhang
    Baoyindureng Wu
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [32] A Note on the Cycle Isolation Number of Graphs
    Zhang, Gang
    Wu, Baoyindureng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [33] A NOTE ON PATH AND CYCLE DECOMPOSITIONS OF GRAPHS
    DECAEN, D
    JOURNAL OF GRAPH THEORY, 1981, 5 (02) : 209 - 211
  • [34] Cycle decompositions V: Complete graphs into cycles of arbitrary lengths
    Bryant, Darryn
    Horsley, Daniel
    Pettersson, William
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 1153 - 1192
  • [35] The number of cycle lengths in graphs of given minimum degree and girth
    Erdos, P
    Faudree, RJ
    Rousseau, CC
    Schelp, RH
    DISCRETE MATHEMATICS, 1999, 200 (1-3) : 55 - 60
  • [36] A generalization of Fan's results: Distribution of cycle lengths in graphs
    Zhang, Jun
    Xiang, Jinghua
    DISCRETE MATHEMATICS, 2009, 309 (04) : 987 - 990
  • [37] On cycle lengths in claw-free graphs with complete closure
    Ryjacek, Zdenek
    Skupien, Zdzislaw
    Vrana, Petr
    DISCRETE MATHEMATICS, 2010, 310 (03) : 570 - 574
  • [38] Note on the domination number of graphs with forbidden cycles of lengths not divisible by 3
    Khoeilar, R.
    Karami, H.
    Chellali, M.
    Sheikholeslami, S. M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 83 : 101 - 108
  • [39] A note on shortest cycle covers of cubic graphs
    Hou, Xinmin
    Zhang, Cun-Quan
    JOURNAL OF GRAPH THEORY, 2012, 71 (02) : 123 - 127
  • [40] Note on Semi-Linkage with Almost Prescribed Lengths in Large Graphs
    Emily Chizmar
    Colton Magnant
    Pouria Salehi Nowbandegani
    Graphs and Combinatorics, 2016, 32 : 881 - 886