A Note on Cycle Lengths in Graphs

被引:0
|
作者
R.J. Gould
P.E. Haxell
A.D. Scott
机构
[1] Department of Mathematics and Computer Science,
[2] Emory University,undefined
[3] Atlanta,undefined
[4] GA 30322,undefined
[5] USA. e-mail: rg@mathcs.emory.edu,undefined
[6] Department of Combinatorics and Optimization,undefined
[7] University of Waterloo,undefined
[8] Waterloo,undefined
[9] Ont.,undefined
[10] N2L 3G1,undefined
[11] Canada. e-mail: pehaxell@math.uwaterloo.ca,undefined
[12] Department of Mathematics,undefined
[13] University College,undefined
[14] London,undefined
[15] WC1E 6BT,undefined
[16] UK. e-mail: scott@math.ucl.ac.uk,undefined
来源
Graphs and Combinatorics | 2002年 / 18卷
关键词
Key words. Cycle lengths, Minimum degree, Circumference;
D O I
暂无
中图分类号
学科分类号
摘要
 We prove that for every c>0 there exists a constant K = K(c) such that every graph G with n vertices and minimum degree at least cn contains a cycle of length t for every even t in the interval [4,ec(G) − K] and every odd t in the interval [K,oc(G) − K], where ec(G) and oc(G) denote the length of the longest even cycle in G and the longest odd cycle in G respectively. We also give a rough estimate of the magnitude of K.
引用
收藏
页码:491 / 498
页数:7
相关论文
共 50 条
  • [21] A Unified Proof of Conjectures on Cycle Lengths in Graphs
    Gao, Jun
    Huo, Qingyi
    Liu, Chun-Hung
    Ma, Jie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7615 - 7653
  • [22] Cycle lengths in graphs with large minimum degree
    Nikiforov, V
    Schelp, RH
    JOURNAL OF GRAPH THEORY, 2006, 52 (02) : 157 - 170
  • [23] On the size of graphs without repeated cycle lengths
    Lai, Chunhui
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 226 - 229
  • [24] Degree sums for edges and cycle lengths in graphs
    Brandt, S
    Veldman, HJ
    JOURNAL OF GRAPH THEORY, 1997, 25 (04) : 253 - 256
  • [25] COLORING GRAPHS WITH TWO ODD CYCLE LENGTHS
    Ma, Jie
    Ning, Bo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 296 - 319
  • [26] Colourings of graphs with two consecutive odd cycle lengths
    Camacho, Stephan Matos
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2009, 309 (15) : 4916 - 4919
  • [27] Cycle Lengths of Hamiltonian Pl-free Graphs
    Meierling, Dirk
    Rautenbach, Dieter
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2335 - 2345
  • [28] Note on cycle double covers of graphs
    Xu, Rui
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1041 - 1042
  • [29] A note on cycle spectra of line graphs
    Pfender, Florian
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2922 - 2924
  • [30] A NOTE ON SIGNED CYCLE DOMINATION IN GRAPHS
    Karami, Hossein
    Khoeilar, Rana
    Sheikholeslami, Seyed Mahmoud
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (01): : 159 - 162