A Note on Cycle Lengths in Graphs

被引:0
|
作者
R.J. Gould
P.E. Haxell
A.D. Scott
机构
[1] Department of Mathematics and Computer Science,
[2] Emory University,undefined
[3] Atlanta,undefined
[4] GA 30322,undefined
[5] USA. e-mail: rg@mathcs.emory.edu,undefined
[6] Department of Combinatorics and Optimization,undefined
[7] University of Waterloo,undefined
[8] Waterloo,undefined
[9] Ont.,undefined
[10] N2L 3G1,undefined
[11] Canada. e-mail: pehaxell@math.uwaterloo.ca,undefined
[12] Department of Mathematics,undefined
[13] University College,undefined
[14] London,undefined
[15] WC1E 6BT,undefined
[16] UK. e-mail: scott@math.ucl.ac.uk,undefined
来源
Graphs and Combinatorics | 2002年 / 18卷
关键词
Key words. Cycle lengths, Minimum degree, Circumference;
D O I
暂无
中图分类号
学科分类号
摘要
 We prove that for every c>0 there exists a constant K = K(c) such that every graph G with n vertices and minimum degree at least cn contains a cycle of length t for every even t in the interval [4,ec(G) − K] and every odd t in the interval [K,oc(G) − K], where ec(G) and oc(G) denote the length of the longest even cycle in G and the longest odd cycle in G respectively. We also give a rough estimate of the magnitude of K.
引用
收藏
页码:491 / 498
页数:7
相关论文
共 50 条
  • [1] A note on cycle lengths in graphs
    Gould, RJ
    Haxell, PE
    Scott, AD
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 491 - 498
  • [2] Note on graphs without repeated cycle lengths
    Chen, GT
    Lehel, J
    Jacobson, MS
    Shreve, WE
    JOURNAL OF GRAPH THEORY, 1998, 29 (01) : 11 - 15
  • [3] Cycle lengths in planar graphs
    Verstraëte, J
    UTILITAS MATHEMATICA, 2006, 69 : 109 - 117
  • [4] ON THE DISTRIBUTION OF CYCLE LENGTHS IN GRAPHS
    GYARFAS, A
    KOMLOS, J
    SZEMEREDI, E
    JOURNAL OF GRAPH THEORY, 1984, 8 (04) : 441 - 462
  • [5] Cycle Lengths in Expanding Graphs
    Limor Friedman
    Michael Krivelevich
    Combinatorica, 2021, 41 : 53 - 74
  • [6] Distribution of cycle lengths in graphs
    Fan, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) : 187 - 202
  • [7] Unavoidable cycle lengths in graphs
    Verstraete, J
    JOURNAL OF GRAPH THEORY, 2005, 49 (02) : 151 - 167
  • [8] Cycle lengths in sparse graphs
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2008, 28 : 357 - 372
  • [9] Cycle Lengths in Expanding Graphs
    Friedman, Limor
    Krivelevich, Michael
    COMBINATORICA, 2021, 41 (01) : 53 - 74
  • [10] Cycle lengths in sparse graphs
    Sudakov, Benny
    Verstraetet, Jacques
    COMBINATORICA, 2008, 28 (03) : 357 - 372