The James Construction and π4(S3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _4(\mathbb {S}^{3})$$\end{document} in Homotopy Type Theory

被引:0
作者
Guillaume Brunerie
机构
[1] Institute for Advanced Study,
关键词
Homotopy type theory; James construction; Agda; Homotopy groups of spheres;
D O I
10.1007/s10817-018-9468-2
中图分类号
学科分类号
摘要
In the first part of this paper we present a formalization in Agda of the James construction in homotopy type theory. We include several fragments of code to show what the Agda code looks like, and we explain several techniques that we used in the formalization. In the second part, we use the James construction to give a constructive proof that π4(S3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _4(\mathbb {S}^{3})$$\end{document} is of the form Z/nZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}/n\mathbb {Z}$$\end{document} (but we do not compute the n here).
引用
收藏
页码:255 / 284
页数:29
相关论文
共 6 条
  • [1] Hou K-B(2016)A mechanization of the Blakers-Massey connectivity theorem in homotopy type theory LICS undefined undefined-undefined
  • [2] Finster E(2015)A cubical approach to synthetic homotopy theory LICS undefined undefined-undefined
  • [3] Licata DR(undefined)undefined undefined undefined undefined-undefined
  • [4] Lumsdaine PL(undefined)undefined undefined undefined undefined-undefined
  • [5] Licata DR(undefined)undefined undefined undefined undefined-undefined
  • [6] Brunerie G(undefined)undefined undefined undefined undefined-undefined