Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation

被引:0
作者
Gilles Evéquoz
Tobias Weth
机构
[1] Johann Wolfgang Goethe-Universität,Institut für Mathematik
来源
Journal of Fixed Point Theory and Applications | 2017年 / 19卷
关键词
Nonlinear Schrödinger equation; Nonlinear Helmholtz equation; Global branch of solutions; A priori bounds; Leray–Schauder fixed-point index; 35J61; 35J05; 35B60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the nonlinear stationary Schrödinger equation -Δu-λu=Q(x)|u|p-2u,inRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u -\lambda u= Q(x)|u|^{p-2}u, \qquad \text {in }\mathbb {R}^N \end{aligned}$$\end{document}in the case where N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 3$$\end{document}, p is a superlinear, subcritical exponent, Q is a bounded, nonnegative and nontrivial weight function with compact support in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} and λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document} is a parameter. Under further restrictions either on the exponent p or on the shape of Q, we establish the existence of a continuous branch C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of nontrivial solutions to this equation which intersects {λ}×Ls(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda \} \times L^{s}(\mathbb {R}^N)$$\end{document} for every λ∈(-∞,λQ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (-\infty , \lambda _Q)$$\end{document} and s>2NN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s> \frac{2N}{N-1}$$\end{document}. Here, λQ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _Q>0$$\end{document} is an explicit positive constant which only depends on N and diam(suppQ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {diam}(\text {supp }Q)$$\end{document}. In particular, the set of values λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} along the branch enters the essential spectrum of the operator -Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta $$\end{document}.
引用
收藏
页码:475 / 502
页数:27
相关论文
共 54 条
[1]  
Amann H(1998)A priori bounds and multiple solutions for superlinear indefinite elliptic problems J. Differ. Equ. 146 336-374
[2]  
López-Gómez J(1998)Variational perturbative methods and bifurcation of bound states from the essential spectrum Proc. Roy. Soc. Edinburgh Sect. A 128 1131-1161
[3]  
Ambrosetti A(2004)Bifurcation results for semilinear elliptic problems in Proc. Roy. Soc. Edinburgh Sect. A 134 11-32
[4]  
Badiale M(1994)Superlinear indefinite elliptic problems and nonlinear Liouville theorems Topol. Methods Nonlinear Anal. 4 59-78
[5]  
Badiale M(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 82 313-345
[6]  
Pomponio A(1983)Nonlinear scalar field equations. II. Existence of infinitely many solutions Arch. Rational Mech. Anal. 82 347-375
[7]  
Berestycki H(1977)On a class of superlinear elliptic problems Comm. Partial Differ. Equ. 2 601-614
[8]  
Capuzzo-Dolcetta I(1995)Eigenvalue problems and bifurcation of semilinear elliptic equation in Nonlinear Anal. 24 529-554
[9]  
Nirenberg L(2002)Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one Bull. London Math. Soc. 34 533-538
[10]  
Berestycki H(1986)On the existence of positive entire solutions of a semilinear elliptic equation Arch. Rational Mech. Anal. 91 283-308