Finding tree patterns consistent with positive and negative examples using queries

被引:0
作者
Hiroki Ishizaka
Hiroki Arimura
Takeshi Shinohara
机构
[1] Kyushu Institute of Technology,Department of Artificial Intelligence
[2] Kyushu University,Department of Informatics
来源
Annals of Mathematics and Artificial Intelligence | 1998年 / 23卷
关键词
Polynomial Time; Tree Pattern; Function Symbol; Inductive Inference; Hypothesis Space;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the problem of finding a hypothesis in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}{\kern 1pt} \mathcal{P}^2 $$ \end{document} consistent with given positive and negative examples. The hypothesis class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}{\kern 1pt} \mathcal{P}^2 $$ \end{document} consists of all sets of at most two tree patterns and represents the class of unions of at most two tree pattern languages. Especially, we consider the problem from the point of view of the consistency problem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}{\kern 1pt} \mathcal{P}^2 $$ \end{document}. The consistency problem is a problem for deciding whether there exists a consistent hypothesis with given positive and negative examples within some fixed hypothesis space. Efficient solvability of that problem is closely related to the possibility of efficient machine learning or machine discovery. Unfortunately, however, the consistency problem is known to be NP-complete for many hypothesis spaces. In this paper, the problem for the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}{\kern 1pt} \mathcal{P}^2 $$ \end{document} is also shown to be NP-complete. In order to overcome this computational hardness, we try to use additional information obtained by making queries. First, we give an algorithm that, using restricted subset queries, solves the consistency problem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}{\kern 1pt} \mathcal{P}^2 $$ \end{document} in time polynomial in the total size of given positive and negative examples. Next, we show that each subset query made by the algorithm can be replaced by several membership queries under some condition on a set of function symbols. As a result, we have that the consistency problem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{T}{\kern 1pt} \mathcal{P}^2 $$ \end{document} is solved in polynomial time using membership queries.
引用
收藏
页码:101 / 115
页数:14
相关论文
共 11 条
  • [1] Angluin D.(1980)Finding patterns common to a set of strings Journal of Computer and System Sciences 21 46-62
  • [2] Angluin D.(1988)Queries and concept learning Machine Learning 2 319-342
  • [3] Lange S.(1991)Polynomial-time inference of arbitrary pattern languages New Generation Computing 8 361-370
  • [4] Wiehagen R.(1988)Computational limitations on learning from examples Journal of the Association for Computing Machinery 35 965-984
  • [5] Pitt L.(1970)A note on inductive generalization Machine Intelligence 5 153-163
  • [6] Valiant L.G.(1970)Transformational systems and the algebraic structure of atomic formulas Machine Intelligence 5 135-152
  • [7] Plotkin G.D.(1984)A theory of the learnable Communications of ACM 27 1134-1142
  • [8] Reynolds J.C.(1994)Ignoring data may be the only way to learn efficiently Journal of Experimental and Theoretical Artificial Intelligence 6 131-144
  • [9] Valiant L.G.(undefined)undefined undefined undefined undefined-undefined
  • [10] Wiehagen R.(undefined)undefined undefined undefined undefined-undefined