Online scheduling of two-machine flowshop with lookahead and incompatible job families

被引:0
作者
Xia Qian
Zhang Xingong
机构
[1] Chongqing Normal University,School of Mathematics Science
来源
Journal of Combinatorial Optimization | 2023年 / 45卷
关键词
Online algorithm; Lookahead interval; Incompatible job families; Parallel-batch scheduling; Competitive ratio;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers online scheduling on two unit flowshop machines, which there exists unbounded parallel-batch scheduling with incompatible job families and lookahead intervals. The unit flowshop machine means that the processing time of any job on each machine is unit processing time. The objective is to minimize the maximum completion time. The lookahead model means that an online algorithm can foresee the information of all jobs arriving in time interval (t,t+β]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,t+\beta ]$$\end{document} at time t. There exist incompatible job families, that is, jobs belonging to different families cannot be processed in the same batch. In this paper, we address the lower bound of the proposed problem, and provide a best possible online algorithm of competitive ratio 1+αf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\alpha _f$$\end{document} for 0≤β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \beta <1$$\end{document}, where αf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _f$$\end{document} is the positive root of the equation (f+1)α2+(β+2)α+β-f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(f+1)} \alpha ^{2}+(\beta +2) \alpha +\beta -f=0$$\end{document} and f is the number of incompatible job families which is known in advance.
引用
收藏
相关论文
共 49 条
  • [1] Arman J(2021)Online scheduling to minimize total weighted (modified) earliness and tardiness cost Journal of Scheduling 24 431-446
  • [2] Philip MK(2021)Online scheduling to minimize maximum weighted flow-time on a bounded parallel-batch machine Annals of Operations Research 298 79-93
  • [3] Chai X(2009)On-line scheduling on an unbounded parallel batch machine to minimize makespan of two families of jobs Journal of Scheduling 12 91-97
  • [4] Li WH(2022)A survey of scheduling with parallel batch (p-batch) processing European Journal of Operational Research 298 1-24
  • [5] Zhu YJ(2019)Online algorithms for scheduling unit length jobs on unbounded parallel-batch machines with linearly lookhead Asia-Pacific Journal of Operational Research 36 1950024-5187
  • [6] Fu RY(2009)Online scheduling of unit length jobs on a batching machine to maximize the number of early jobs with lookahead Theoretical Computer Science 410 5182-125
  • [7] Tian J(2014)Online scheduling of incompatible unit-length job families with lookahead Theoretical Computer Science 543 120-110
  • [8] Yuan JJ(2019)On-line bounded-batching scheduling of unit-length jobs with two incompatible families Operations Research Transactions 23 105-297
  • [9] Fowler John W(2012)Online algorithms for scheduling unit length jobs on parallel-batch machines with lookahead Information Processing Letters 112 292-1761
  • [10] Mönch Lars(2021)On-line scheduling with equal-length jobs on parallel-batch machines to minimise maximum flow-time with delivery times Journal Of The Operational Research Society 72 1754-350