On the Ising Model with Strongly Anisotropic External Field

被引:0
作者
F. R. Nardi
E. Olivieri
M. Zahradník
机构
[1] II Università di Roma Tor Vergata,Dipartimento di Matematica
[2] Charles University,Faculty of Mathematics and Physics
来源
Journal of Statistical Physics | 1999年 / 97卷
关键词
Ising model; anisotropic field; phase diagram; cluster expansion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyze the equilibrium phase diagram of the two-dimensional ferromagnetic n.n. Ising model when the external field takes alternating signs on different rows. We show that some of the zero-temperature coexistence lines disappear at every positive sufficiently small temperature, whereas one (and only one) of them persists for sufficiently low temperature.
引用
收藏
页码:87 / 144
页数:57
相关论文
共 19 条
  • [1] Bricmont J.(1985)First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory Comm. Math. Phys. 101 501-538
  • [2] Kuroda K.(1996)Estimates of semi-invariants for the Ising model at low temperatures topics in statistical and theoretical physics Amer. Math. Soc. Transl. (2) V177 59-81
  • [3] Lebowitz J. L.(1965)Existence of a phase transition in the two-dimensional and three-dimensional Ising models Sov. Phys. Dokl. 10 111-113
  • [4] Dobrushin R. L.(1985)An analysis of ANNNI model by Peierls contour method Comm. Math. Phys. 98 119-144
  • [5] Dobrushin R. L.(1988)Contour models with interaction and their applications Sel. Math. Sov. 7 291-315
  • [6] Dinaburg E. I.(1964)Peierls' proof of spontaneous magnetization of a two-dimensional Ising ferrogmagnet Phys. Rev. A 136 437-439
  • [7] Sinai Y. G.(1996)Cluster expansions for abstract polymer models Comm. Math. Phys. 103 491-498
  • [8] Dinaburg E. I.(1996)Low temperature stochastic dynamics for an Ising model with alternating field Markov Proc. Rel. Field 2 117-166
  • [9] Sinai Y. G.(1936)On the Ising model of ferromagnetism Proc. Cambridge Phil. Soc. 32 477-482
  • [10] Griffiths R. B.(1975)Phase diagrams of classical lattice systems Theor. Math. Phys. 25 1185-1192