Zero-Divisor Graphs of Rings and Their Hermitian Matrices

被引:0
作者
Lu Lu
Lihua Feng
Weijun Liu
Guihai Yu
机构
[1] Central South University,School of Mathematics and Statistics, HNP
[2] Guizhou University of Finance and Economics,LAMA
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Ring; Zero-divisor graph; Hermitian matrix; 05C50; 05E99; 15B57;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the interplay between the algebraic properties of the rings, the combinatorial properties of their corresponding zero-divisor graphs, and the associated Hermitian matrix of such graphs. For a finite ring R, its zero-divisor graph may contain both directed edges and undirected edges; such graphs are called mixed graphs. The Hermitian matrices of mixed graphs are natural generalizations of the adjacency matrices of undirected graphs. In this paper, we completely determine the structure and the Hermitian eigenvalues of the zero-divisor graph Γ(D×R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (D\times R)$$\end{document} by using the structure and the Hermitian eigenvalues of the zero-divisor graph Γ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (R)$$\end{document}. As applications, we investigate Γ(D×R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (D\times R)$$\end{document} for some special R and extend some known results on this topic.
引用
收藏
相关论文
共 21 条
[1]  
Anderson DF(2008)On the zero-divisor graph of a ring Commun. Algebra 36 2073-3092
[2]  
Badawi A(1999)The zero-divisor graphs of a commutative ring J. Algebra 217 434-447
[3]  
Anderson DF(2007)On the diameter and girth of a zero-divisor graph J. Pure Appl. Algebra 210 543-550
[4]  
Livingston PS(1988)Coloring of commutative rings J. Algebra 116 208-226
[5]  
Anderson DF(2016)Hermitian adjacency matrix of digraphs and mixed graphs J. Graph Theory 85 217-248
[6]  
Mulay SB(2013)On the adjacency matrix and neighborhood associated with zero-divisor graph for direct product of finite commutative rings Int. J. Comput. Appl. Technol. Res. 2 315-323
[7]  
Beck I(2015)Hermitian-adjacency matrices and Hermitian energies of mixed graphs Linear Algebra Appl. 466 182-207
[8]  
Guo K(2022)Signed zero-divisor graphs over commutative rings Commun. Math. Stat. 301 174-193
[9]  
Mohar B(2006)The diameter of a zero-divisor graph J. Algebra 54 787-802
[10]  
Kuntala P(2021)Eigenvalues of zero-divisor graphs of finite commutative rings J. Algebraic Comb. 30 3533-3558