Work function optimization for enhancement of sensitivity of dual-material (DM), double-gate (DG), junctionless MOSFET-based biosensor

被引:0
作者
Monika Kumari
Niraj Kumar Singh
Manodipan Sahoo
Hafizur Rahaman
机构
[1] Indian Institute of Technology (Indian School of Mines),Department of Electronics Engineering
[2] IIEST,Department of Information Technology
来源
Applied Physics A | 2021年 / 127卷
关键词
Work function; DMDG-JL-MOSFET; Biosensor; Sentaurus TCAD; Sensitivity; SMDG-JL-MOSFET;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the impact of gate material work function on the sensitivity of dual-material, double-gate, junctionless MOSFET (DMDG-JL-MOSFET\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DMDG-JL-MOSFET$$\end{document})-based biosensor has been studied. To enhance the sensitivity of the biosensor, optimization of gate work functions has been done through Sentaurus TCAD simulator. With the immobilization of biomolecules in the cavity at different value of work function of gate metal 1 (M1) and gate metal 2 (M2), i.e., WF1 and WF2, enhancement in sensing metrics (change in threshold voltage SVth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{V{\rm th}}$$\end{document} and ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}$$\end{document}/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{OFF}$$\end{document} ratio) is observed. The enhancement in sensitivity is profound in source-side gate (M1) work function (WF1) optimization as compared to drain-side gate (M2) work function (WF2) optimization. Sensitivity of 90 mV is observed in source-side gate work function optimization which is ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document} 89% more than the sensitivity of 23 mV which is achieved in drain-side gate work function optimization for a fixed concentration and dielectric constant of biomolecules. It has also been noted that the proposed structure exhibits ∼90%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 90\%$$\end{document} higher sensitivity than the single-material, dual-gate, junctionless MOSFET (SMDG-JL-MOSFET\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SMDG-JL-MOSFET$$\end{document}) biosensor. Results showcase that the optimization of gate metal work functions enhances the sensitivity of the biosensor.
引用
收藏
相关论文
共 119 条
  • [1] Bergveld P(1986)The development and application of FET-based biosensors Biosensors. 2 15-33
  • [2] Im H(2007)A dielectric-modulated field-effect transistor for biosensing Nat. Nanotechnol. 2 430-434
  • [3] Huang X-J(2008)Novel dielectric modulated field-effect transistor for label-free DNA detection Biochip J. 2 127-134
  • [4] Gu B(2009)Nanogap field-effect transistor biosensors for electrical detection of avian influenza Small 5 2407-2412
  • [5] Choi Y-K(2009)Junctionless multigate field-effect transistor Appl.Phys.Lett. 94 053511-2412
  • [6] Kim CH(2010)Reduced electric field in junctionless transistors Appl.Phys.Lett. 96 073510-625
  • [7] Jung C(2010)High-temperature performance of silicon junctionless MOSFETs IEEE Trans. Electron Devices 57 620-3662
  • [8] Park HG(2013)Subthreshold behavior models for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs IEEE Trans. Electron Devices. 60 3655-480
  • [9] Choi YK(2013)A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications IEEE Trans. Electron Devices 34 478-10
  • [10] Gu B(2013)Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor Sens. Actuat. B: Chem. 183 1-572