Axiomatizations of quasi-Lovász extensions of pseudo-Boolean functions

被引:0
作者
Miguel Couceiro
Jean-Luc Marichal
机构
[1] University of Luxembourg,Mathematics Research Unit, FSTC
来源
Aequationes mathematicae | 2011年 / 82卷
关键词
Primary 39B22; 39B72; Secondary 26B35; Aggregation function; discrete Choquet integral; Lovász extension; functional equation; comonotonic modularity; invariance under horizontal differences; axiomatization;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the concept of quasi-Lovász extension as being a mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\colon I^n\to\mathbb{R}}$$\end{document} defined on a nonempty real interval I containing the origin and which can be factorized as f(x1, . . . , xn) =  L(φ(x1), . . . , φ(xn)), where L is the Lovász extension of a pseudo-Boolean function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi\colon \{0, 1\}^n \to \mathbb{R}}$$\end{document} (i.e., the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L\colon \mathbb{R}^n \to \mathbb{R}}$$\end{document} whose restriction to each simplex of the standard triangulation of [0, 1]n is the unique affine function which agrees with ψ at the vertices of this simplex) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi\colon I \to \mathbb{R}}$$\end{document} is a nondecreasing function vanishing at the origin. These functions appear naturally within the scope of decision making under uncertainty since they subsume overall preference functionals associated with discrete Choquet integrals whose variables are transformed by a given utility function. To axiomatize the class of quasi-Lovász extensions, we propose generalizations of properties used to characterize Lovász extensions, including a comonotonic version of modularity and a natural relaxation of homogeneity. A variant of the latter property enables us to axiomatize also the class of symmetric quasi-Lovász extensions, which are compositions of symmetric Lovász extensions with 1-place nondecreasing odd functions.
引用
收藏
页码:213 / 231
页数:18
相关论文
共 15 条
  • [1] Couceiro M.(2009)Axiomatizations of quasi-polynomial functions on bounded chains Aeq. Math. 78 195-213
  • [2] Marichal J.-L.(2010)Quasi-polynomial functions over bounded distributive lattices Aeq. Math. 80 319-334
  • [3] Couceiro M.(2010)Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices Fuzzy Sets Syst. 161 694-707
  • [4] Marichal J.-L.(2010)Representations and characterizations of polynomial functions on chains J. Mult.-Valued Logic Soft Comput. 16 65-86
  • [5] Couceiro M.(1992)Characterization and comparison of Sugeno and Choquet integrals Fuzzy Sets Syst. 52 61-67
  • [6] Marichal J.-L.(2011)The ordered modular averages IEEE Trans. Fuzzy Syst. 19 42-50
  • [7] Couceiro M.(1984)Extensions of functions of 0–1 variables and applications to combinatorial optimization Numer. Funct. Anal. Optim. 7 23-62
  • [8] Marichal J.-L.(1979)Integral with respect to a pre-measure Mathematica Slovaca 29 141-155
  • [9] de Campos L.M.(1978)Minimizing a submodular function on a lattice Oper. Res. 26 305-321
  • [10] Bolaños M.J.(undefined)undefined undefined undefined undefined-undefined