Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning

被引:0
|
作者
Pierclaudio Savino
Francesco Tondolo
机构
[1] Politecnico di Torino,Department of Structural, Geotechnical and Building Engineering
关键词
Civil infrastructure; Automated inspection; Damages; Semantic segmentation; Deep learning; Computer vision;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, the number of aging civil infrastructures is growing world-wide and when concrete is involved, cracking and delamination can occur. Therefore, ensuring the safety and serviceability of existing civil infrastructure and preventing an inadequate level of damage have become some of the major issues in civil engineering field. Routine inspections and maintenance are then required to avoid leaving these defects unexplored and untreated. However, due to the limitations of on-field inspection resources and budget management efficiency, automation technology is needed to develop more effective and pervasive inspection processes. This paper presents a pixel-wise classification method to automatically detect and quantify concrete defects from images through semantic segmentation network. The proposed model uses Deeplabv3+ network with weights initialized from pre-trained neural networks. The comparison study among the performance of different deep neural network models resulted in ResNet-50 as the most suitable network for applications of civil infrastructure defects segmentation. A total of 1250 images have been collected from the Internet, on-field bridge inspections and Google Street View in order to build an invariant network for different resolutions, image qualities and backgrounds. A randomized data augmentation allowed to double the database and assign 2000 images for training and 500 images for validation. The experimental results show global accuracies for training and validation of 93.42% and 91.04%, respectively. The promising results highlighted the suitability of the model to be integrated in digitalized management system to increase the productivity of management agencies involved in civil infrastructure inspections and digital transformation.
引用
收藏
页码:35 / 48
页数:13
相关论文
共 50 条
  • [1] Civil infrastructure defect assessment using pixel-wise segmentation based on deep learning
    Savino, Pierclaudio
    Tondolo, Francesco
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2023, 13 (01) : 35 - 48
  • [2] Combination of pixel-wise and region-based deep learning for pavement inspection and segmentation
    Liu, Cunqiang
    Li, Juan
    Gao, Jie
    Gao, Ziqiang
    Chen, Zhongjie
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (09) : 3011 - 3023
  • [3] Federated learning-based semantic segmentation for pixel-wise defect detection in additive manufacturing
    Mehta, Manan
    Shao, Chenhui
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 64 : 197 - 210
  • [4] Joint Segment-Level and Pixel-Wise Losses for Deep Learning Based Retinal Vessel Segmentation
    Yan, Zengqiang
    Yang, Xin
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (09) : 1912 - 1923
  • [5] Semantic Segmentation of Tree-Canopy in Urban Environment with Pixel-Wise Deep Learning
    Martins, Jose Augusto Correa
    Nogueira, Keiller
    Osco, Lucas Prado
    Gomes, Felipe David Georges
    Furuya, Danielle Elis Garcia
    Goncalves, Wesley Nunes
    Sant'Ana, Diego Andre
    Ramos, Ana Paula Marques
    Liesenberg, Veraldo
    dos Santos, Jefersson Alex
    de Oliveira, Paulo Tarso Sanches
    Marcato Junior, Jose
    REMOTE SENSING, 2021, 13 (16)
  • [6] Deep Learning-Based Pixel-Wise Lesion Segmentation on Oral Squamous Cell Carcinoma Images
    Martino, Francesco
    Bloisi, Domenico D.
    Pennisi, Andrea
    Fawakherji, Mulham
    Ilardi, Gennaro
    Russo, Daniela
    Nardi, Daniele
    Staibano, Stefania
    Merolla, Francesco
    APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 14
  • [7] Object Segmentation Using Pixel-Wise Adversarial Loss
    Durall, Ricard
    Pfreundt, Franz-Josef
    Koethe, Ullrich
    Keuper, Janis
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 303 - 316
  • [8] A DEEP LEARNING APPROACH TO SPINE SEGMENTATION USING A FEED-FORWARD CHAIN OF PIXEL-WISE CONVOLUTIONAL NETWORKS
    Whitehead, William
    Moran, Steven
    Gaonkar, Bilwaj
    Macyszyn, Luke
    Iyer, Subramanian
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 868 - 871
  • [9] Deep Convolutional Pixel-wise Labeling for Skin Lesion Image Segmentation
    Youssef, Ali
    Bloisi, Domenico D.
    Muscio, Mario
    Pennisi, Andrea
    Nardi, Daniele
    Facchiano, Antonio
    2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 536 - 541
  • [10] Pixel-wise phase unwrapping of fringe projection profilometry based on deep learning
    Huang, Wangwang
    Mei, Xuesong
    Fan, Zhengjie
    Jiang, Gedong
    Wang, Wenjun
    Zhang, Ruting
    MEASUREMENT, 2023, 220