The Eta Invariant and the Real Connective K-Theory of the Classifying Space for Quaternion Groups

被引:0
作者
Egidio Barrera-Yanez
Peter B. Gilkey
机构
[1] Instituto de Matemáticas UNAM U. Cuernavaca,Mathematics Department
[2] University of Oregon,undefined
[3] Max Planck Institute for Mathematics in the Sciences,undefined
来源
Annals of Global Analysis and Geometry | 2003年 / 23卷
关键词
quaternion spherical space form; eta invariant; symplectic ; -theory; real connective ; -theory;
D O I
暂无
中图分类号
学科分类号
摘要
We express the real connective K-theory groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde k$$ \end{document}o4k−1(BQℓ) ofthe quaternion group Qℓof order ℓ = 2j ≥ 8 in terms of therepresentation theory of Qℓ by showing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde k$$ \end{document}o4k−1(BQℓ) = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde K$$ \end{document}Sp(S4k+3/τQℓ)where τ is any fixed point free representation of Qℓin U(2k + 2).
引用
收藏
页码:173 / 188
页数:15
相关论文
共 25 条
[1]  
Atiyah M. F.(1975)Spectral asymmetry and Riemannian geometry I, II, III Math. Proc. Cambridge Philos. Soc. 77 43-69
[2]  
Patodi V. K.(2000)The KO theory of toric manifolds Trans. Amer. Math. Soc. 352 1191-1202
[3]  
Singer I. M. I.(1996)Real connective Trans. Amer. Math. Soc. 348 2201-2216
[4]  
Bahri A.(1999)-theory and the quaterion group Ann. Global Anal. Geom. 17 289-299
[5]  
Bendersky M.(1995)The eta invariant and the connective Topl. Methods Nonlinear Anal. 6 127-135
[6]  
Bayen D.(1997) theory of the classifying space for cyclic 2 groups J. Differential Geom. 46 344-405
[7]  
Bruner R.(1978)An analytic computation of Indiana Univ. Math. J. 27 889-918
[8]  
Barrera-Yanez E.(2001)( Math. Ann. 320 585-708
[9]  
Gilkey P.(1987)) Topology Appl. 25 179-184
[10]  
Botvinnik B.(1999)The Gromov-Lawason-Rosenberg conjecture for groups with periodic cohomology Topology 38 1075-1092