A Crossover Between Open Quantum Random Walks to Quantum Walks

被引:0
作者
Norio Konno
Kaname Matsue
Etsuo Segawa
机构
[1] Yokohama National University,Department of Applied Mathematics, Faculty of Engineering
[2] Kyushu University,Institute of Mathematics for Industry
[3] Kyushu University,International Institute for Carbon
[4] Yokohama National University,Neutral Energy Research (WPI
来源
Journal of Statistical Physics | / 190卷
关键词
Quantum walk; Open quantum random walk; Perturbation theory for linear operators; Limit theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an intermediate walk continuously connecting an open quantum random walk and a quantum walk with parameters M∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\in {{\mathbb {N}}}$$\end{document} controlling a decoherence effect; if M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document}, the walk coincides with an open quantum random walk, while M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document}, the walk coincides with a quantum walk. We define a measure which recovers usual probability measures on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}$$\end{document} for M=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=\infty $$\end{document} and M=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1$$\end{document} and we observe intermediate behavior through numerical simulations for varied positive values M. In the case for M=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2$$\end{document}, we analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk. More precisely, we observe both the ballistically moving towards left and right sides and localization of this walker simultaneously. The analysis is based on Kato’s perturbation theory for linear operator. We further analyze this limit theorem in more detail and show that the above three modes are described by Gaussian distributions.
引用
收藏
相关论文
共 33 条
[1]  
Ambainis A(2003)Quantum walks and their algorithmic applications Int. J. Quant. Inf. 1 507-518
[2]  
Attal S(2015)Central limit theorems for open quantum random walks and quantum measurement records Ann. Henri Poincaŕe 16 15-43
[3]  
Guillotin-Plantard N(2012)Open Quantum Random Walks J. Stat. Phys. 147 832-852
[4]  
Sabot C(2003)Quantum random walks with decoherent coins Phys. Rev. A 67 137-142
[5]  
Attal S(2019)Open quantum random walks and quantum Markov chains Funct. Anal. Appl. 53 39-1220
[6]  
Petruccione F(2019)Dynamical system induced by quantum walks J. Phys. A 52 1169-49
[7]  
Sabot C(2007)Decoherence in quantum walks—a review Math. Struct. Comp. Sci. 17 36-735
[8]  
Sinayskiy I(2023)Walk/Zeta Correspondence J. Stat. Phys. 190 28-1243
[9]  
Brun TA(2009)Limit theorems and absorption problems for one-dimensional correlated random walks Stoch. Models 25 710-2645
[10]  
Brun HA(2019)Limit theorems for open quantum random walks J. Stat. Phys. 176 1231-119