Closed-Form Solution of Conic in Point-Line Enumerative Problem of Conic

被引:0
作者
Guo, Yang [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110819, Liaoning, Peoples R China
关键词
Real enumerative geometry; Conic; Closed-form solution; Reciprocal transformation; GEOMETRY;
D O I
10.1007/s00373-024-02793-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the reciprocal transformation to propose the closed-form solutions to the conics through m points and tangent to n lines satisfying m+n=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n=5$$\end{document} in general position. We also derive the algebraic and geometric necessary and sufficient conditions for the non-degenerate real conics.
引用
收藏
页数:9
相关论文
共 10 条
  • [1] Enumerative algebraic geometry of conics
    Bashelor, Andrew
    Ksir, Amy
    Traves, Will
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (08) : 701 - 728
  • [2] Coxeter HSM., 1969, Introduction to geometry, V2nd, P216
  • [3] Fulton W., 1984, Introduction to Intersection Theory in Algebraic Geometry, P53
  • [4] Gibson C. G., 1998, Elementary geometry of algebraic curves: an undergraduate introduction, DOI [10.1017/CBO9781139173285, DOI 10.1017/CBO9781139173285]
  • [5] Hartley RI., 2004, Multiple View Geometry in Computer Vision, V2, P30, DOI [10.1017/CBO9780511811685, DOI 10.1017/CBO9780511811685]
  • [6] Lord E, 2013, Symmetry and pattern in projective geometry, DOI [10.1007/978-1-4471-4631-5, DOI 10.1007/978-1-4471-4631-5]
  • [7] Semple J., 1952, Algebraic Projective Geometry, P155
  • [8] Sottile F, 2000, MICH MATH J, V48, P573
  • [9] Sottile F., 2011, Real Solutions to Equations from Geometry, P105
  • [10] Sottile Frank., 1997, P S PURE MATH, V62, P435