Random A-permutations: Convergence to a Poisson process

被引:0
|
作者
A. L. Yakymiv
机构
[1] Steklov Mathematics Institute,
来源
Mathematical Notes | 2007年 / 81卷
关键词
random permutation; Poisson process; permutation group; permutation cycle; total variance distance; normal distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that Sn is the permutation group of degree n, A is a subset of the set of natural numbers ℕ, and Tn(A) is the set of all permutations from Sn whose cycle lengths belong to the set A. Permutations from Tn are usually called A-permutations. We consider a wide class of sets A of positive asymptotic density. Suppose that ζmn is the number of cycles of length m of a random permutation uniformly distributed on Tn. It is shown in this paper that the finite-dimensional distributions of the random process {tzmn, m ε A} weakly converge as n → ∞ to the finite-dimensional distributions of a Poisson process on A.
引用
收藏
页码:840 / 846
页数:6
相关论文
共 50 条
  • [1] Random A-permutations:: Convergence to a Poisson process
    Yakymiv, A. L.
    MATHEMATICAL NOTES, 2007, 81 (5-6) : 840 - 846
  • [2] Random A-permutations and Brownian motion
    A. L. Yakymiv
    Proceedings of the Steklov Institute of Mathematics, 2013, 282 : 298 - 318
  • [3] On the Rate of Convergence to a Poisson Process
    Egorov, V. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2011, 44 (02) : 103 - 109
  • [4] Fractional Poisson process with random drift
    Beghin, Luisa
    D'Ovidio, Mirko
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [5] The accumulation of beneficial mutations and convergence to a Poisson process
    Udomchatpitak, Nantawat
    Schweinsberg, Jason
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 183
  • [6] Fragmenting random permutations
    Goldschmidt, Christina
    Martin, James B.
    Spano, Dario
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 461 - 474
  • [7] Indifferentiability of Truncated Random Permutations
    Choi, Wonseok
    Lee, Byeonghak
    Lee, Jooyoung
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT I, 2019, 11921 : 175 - 195
  • [8] Pattern avoidance for random permutations
    Crane, Harry
    DeSalvo, Stephen
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 19 (02):
  • [9] THE MAXIMUM OF A RATCHET SCANNING PROCESS OVER A POISSON RANDOM FIELD
    Tu, I-Ping
    STATISTICA SINICA, 2013, 23 (04) : 1541 - 1551
  • [10] THE CYCLE STRUCTURE OF RANDOM PERMUTATIONS
    ARRATIA, R
    TAVARE, S
    ANNALS OF PROBABILITY, 1992, 20 (03): : 1567 - 1591