New treatments for spinal muscular atrophy

被引:1
|
作者
Wurster, C. D. [1 ]
Guenther, R. [2 ]
机构
[1] Univ Kliniken Ulm, Klin Neurol Rehabil, Oberer Eselsberg 45, D-89081 Ulm, Germany
[2] Techn Univ Dresden, Univ Klinikum Carl Gustav Carus, Neurol Klin & Poliklin, DZNE, Dresden, Germany
来源
NERVENARZT | 2020年 / 91卷 / 04期
关键词
Neuromuscular disease; Antisense oligonucleotide; Small molecules; Gene replacement therapy; Disease-modifying drugs;
D O I
10.1007/s00115-020-00871-7
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
5-q-associated spinal muscular atrophy (SMA) has so far been a causally untreatable disease, which leads to severe, progressive physical restrictions due to the loss of spinal motor neurons. However, the monogenetic cause of the relatively short coding "survival motor neuron" (SMN) 1 gene sequence and the presence of almost identical gene copies, the SMN2 genes, offer favorable conditions for the development of new therapeutic approaches. While previously only supportive and palliative therapies could be used, new disease-modifying drugs are now available for the first time. Nusinersen, an antisense oligonucleotide (ASO), is the first drug that has received approval in Germany to treat SMA. Further therapeutic approaches such as the so-called "small molecules" or the gene replacement therapy are currently still being tested in clinical studies or are already waiting for approval by the European Medicines Agency (EMA). In this article, the most important disease-modifying drugs of SMA, the associated studies and their challenges are presented.
引用
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [21] Clinical perspectives: Treating spinal muscular atrophy
    McPheron, Molly A.
    Felker, Marcia, V
    MOLECULAR THERAPY, 2024, 32 (08) : 2489 - 2504
  • [22] Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy
    Meijboom, Katharina E.
    Volpato, Viola
    Monzon-Sandoval, Jimena
    Hoolachan, Joseph M.
    Hammond, Suzan M.
    Abendroth, Frank
    de Jong, Olivier G.
    Hazell, Gareth
    Ahlskog, Nina
    Wood, Matthew J. A.
    Webber, Caleb
    Bowerman, Melissa
    JCI INSIGHT, 2021, 6 (13)
  • [23] Onasemnogene Abeparvovec: A Review in Spinal Muscular Atrophy
    Blair, Hannah A.
    CNS DRUGS, 2022, 36 (09) : 995 - 1005
  • [24] Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy
    Abreu, Nicolas J.
    Waldrop, Megan A.
    PEDIATRIC PULMONOLOGY, 2021, 56 (04) : 710 - 720
  • [25] Comprehensive Modeling of Spinal Muscular Atrophy in Drosophila melanogaster
    Spring, Ashlyn M.
    Reimer, Amanda C.
    Hamilton, Christine D.
    Schillinger, Michela J.
    Matera, A. Gregory
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2019, 12
  • [26] Pathogenesis and therapeutic targets in spinal muscular atrophy (SMA)
    Lefebvre, S.
    Sarret, C.
    ARCHIVES DE PEDIATRIE, 2020, 27 (07): : 3 - 8
  • [27] Choosing Life with Spinal Muscular Atrophy Type 1
    Moran Lavie
    Hodaya Nisnkorn
    Liora Sagi
    Israel Amirav
    Advances in Therapy, 2020, 37 : 1708 - 1713
  • [28] Spinal Muscular Atrophy: A Potential Target for In Utero Therapy
    Baptiste, Caitlin
    De Vivo, Darryl C.
    CLINICAL OBSTETRICS AND GYNECOLOGY, 2021, 64 (04) : 917 - 925
  • [29] Respiratory management of children with spinal muscular atrophy (SMA)
    Fauroux, B.
    Griffon, L.
    Amaddeo, A.
    Stremler, N.
    Mazenq, J.
    Khirani, S.
    Baravalle-Einaudi, M.
    ARCHIVES DE PEDIATRIE, 2020, 27 (07): : 29 - 34
  • [30] Special Considerations in the Respiratory Management of Spinal Muscular Atrophy
    Schroth, Mary K.
    PEDIATRICS, 2009, 123 : S245 - U63