Dynamics of a Prey–Predator System with Herd Behaviour in Both and Strong Allee Effect in Prey

被引:6
作者
Biswas S. [1 ]
Pal D. [2 ]
Mahapatra G.S. [1 ]
Samanta G.P. [3 ]
机构
[1] Department of Mathematics, National Institute of Technology-Puducherry, Karaikal
[2] Chandrahati Dilip Kumar High School (H.S.), Chandrahati, 712504, West Bengal
[3] Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, 711103, Howrah
关键词
allee effect; extinction; herd behaviour; prey−predator; stability;
D O I
10.1134/S0006350920050036
中图分类号
学科分类号
摘要
Abstract: This paper mainly deals with the prey−predator dynamics where both the prey and predator exhibit herd behavior. Positivity, boundedness, some extinction criteria, stability of possible equilibrium points are discussed with some global behavior, in an innovative approach. Numerical simulations are represented to clarify the analytical discussions. The biological implications of analytical and numerical findings are discussed separately for the purpose of maintaining ecological balance in nature. At the end, the possibilities of future work related to this topic are represented. © 2020, Pleiades Publishing, Inc.
引用
收藏
页码:826 / 835
页数:9
相关论文
共 65 条
[1]  
Malchow H., Petrovskii S., Venturino E., Spatiotemporal Patterns in Ecology and Epidemiology, (2008)
[2]  
Murray J.D., Mathematical Biology, (1989)
[3]  
Volterra V., D'Ancona U., VII Congr. Int. Acqui. Et De Peche, pp. 1-14, (1931)
[4]  
Lotka A.J., Elements of Mathematical Biology, (1956)
[5]  
Holling C.S., Mem. Entomol. Soc. Can., 45, (1965)
[6]  
Tanner J.T., Ecology, 56, (1975)
[7]  
Braza P.A., SIAM J. Appl. Math., 63, (2003)
[8]  
Hsu S.B., Hwang T.W., Kuang Y., J. Math. Biol., 42, (2001)
[9]  
Hsu S.B., Hwang T.W., Kuang Y., Math. Biosci., 181, (2003)
[10]  
Leslie P.H., Gower J.C., Biometrika, 47, (1960)