Estimation of α-κ-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\kappa -\mu $$\end{document} mobile fading channel parameters using evolutionary algorithms

被引:0
作者
Carlos Paula Lemos
Antônio Cláudio Paschoarelli Veiga
Sandro Adriano Fasolo
机构
[1] Ciência e Tecnologia do Triângulo Mineiro,Instituto Federal de Educação
[2] Universidade Federal de Uberlândia,Faculdade de Engenharia Elétrica
[3] Universidade Federal de São João del Rei,undefined
关键词
distribuition; Parameter estimation; Evolutionary algorithm; Genetic algorithm; Differential evolution; Maximum likelihood estimation;
D O I
10.1007/s11235-020-00743-0
中图分类号
学科分类号
摘要
This paper proposes the use of evolutionary algorithms (EAs) to estimate the physical parameters of the generalized α-κ-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\kappa -\mu $$\end{document} mobile fading channel model. The estimation of parameters is a fundamental step that allows for the statistical model to adjust to the real experimental data. The The maximum likelihood estimation (MLE) method that is traditionally used for estimating parameters of the α-κ-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\kappa -\mu $$\end{document} channel uses nonlinear numerical methods. In some cases, the use of nonlinear numerical methods may lead the MLE to make physically unacceptable estimations, or even to not be able to obtain a result. Our proposal is to innovate the existing EAs by incorporating an adaptive approach, a new mutation strategy and an adequate fitness function for the estimation of α-κ-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\kappa -\mu $$\end{document} parameters. Experimental results are presented to confirm that parameters estimated by the EAs (genetic algorithms, differential evolution algorithms, and differential evolution algorithms with an adaptive guiding mechanism) are all physically acceptable. These experiments show that the EAs outperform MLE estimation results.
引用
收藏
页码:189 / 211
页数:22
相关论文
共 54 条
[1]  
Souza R(2015)On the efficiente generation of International Journal of Antennaas and Propagation 2015 1-13
[2]  
Ribeiro A(2019) and IEEE Communications Letters 23 192-195
[3]  
Guimarães D(2019) white samples with applications Physical Communication 35 100696-30
[4]  
Moualeu JM(2016)Performance analysis of digital communication systems over Swarm and Evolutionary Computation 27 1-58040
[5]  
da Costa DB(2011) - IEEE Transactions on Evolutionary Computation 7 58023-489
[6]  
Hamouda W(2019) - IEEE Access 70 447-311
[7]  
Dias US(2019) fading channels Telecommunication Systems 43 284-458
[8]  
de Souza RAA(2018)Performance analysis of spatial modulation over generalized Swarm and Evolutionary Computation 76 445-252
[9]  
Kalia S(2019) fading distribution Applied Soft Computing 74 225-4812
[10]  
Joshi A(2020)Recent advances in differential evolution—An updated survey Telecommunication Systems 21 4769-1725