Cartesian Solutions for the Incompressible Density-Dependent Euler–Poisson Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{N}$$\end{document}

被引:0
作者
Jie Yang
Manwai Yuen
机构
[1] Beijing University of Chinese Medicine,School of Chinese Meteria Medica
[2] The Education University of Hong Kong,Department of Mathematics and Information Technology
关键词
Incompressible; Euler–Poisson equations; Density-dependent; Exact solutions; Quadratic form; Curve integration; 35Q31; 35C05; 76B03; 76M60;
D O I
10.1007/s40819-016-0189-0
中图分类号
学科分类号
摘要
This paper uses matrix and curve integration theory to theoretically show the existence of Cartesian vector solutions for the incompressible density-dependent Euler–Poisson equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}^{N}$$\end{document} with N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}. Instead of analytically solving the equations, our approach algebraically constructs appropriate matrices. Once the required matrices are chosen, the solution can be directly obtained.
引用
收藏
页码:1549 / 1556
页数:7
相关论文
共 50 条
[42]   On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'/G^{2}$$\end{document})-expansion method and the modified Kudryashov method [J].
Muhammad Nasir Ali ;
M. S. Osman ;
Syed Muhammad Husnine .
SeMA Journal, 2019, 76 (1) :15-25
[43]   The extended-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G'}{G}\right)$$\end{document}-expansion method and new exact solutions for the conformable space-time fractional diffusive predator-prey system [J].
Jie Wu ;
Zhao Li ;
Hao Tian ;
Zheng Yang .
Scientific Reports, 15 (1)
[44]   Soliton solutions of nonlinear coupled Davey–Stewartson Fokas system using modified auxiliary equation method and extended (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G^{2})$$\end{document}-expansion method [J].
M. Atta Ullah Khan ;
Maasoomah Sadaf ;
Ghazala Akram ;
Asnake Birhanu ;
Kashif Rehan ;
Y. S. Hamed .
Scientific Reports, 14 (1)
[45]   Initial value problem for the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional time-fractional generalized convection–reaction–diffusion wave equation: invariant subspaces and exact solutions [J].
P. Prakash ;
K. S. Priyendhu ;
K. M. Anjitha .
Computational and Applied Mathematics, 2022, 41 (1)
[48]   The (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional generalized time-fractional Zakharov Kuznetsov Benjamin Bona Mahony equation: its classical and nonclassical symmetries, exact solutions, and conservation laws [J].
Farzaneh Alizadeh ;
Evren Hincal ;
Kamyar Hosseini ;
Mir Sajjad Hashemi ;
Anusmita Das .
Optical and Quantum Electronics, 2023, 55 (12)
[49]   Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′G,1G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( \frac{G'}{G},\frac{1}{G} ) $\end{document}-expansion method [J].
Altaf A. Al-Shawba ;
Farah A. Abdullah ;
Khaled A. Gepreel ;
Amirah Azmi .
Advances in Difference Equations, 2018 (1)
[50]   Exploring new features for the (2+1)-dimensional Kundu–Mukherjee–Naskar equation via the techniques of (G′/G,1/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^{\prime }/G,1/G$$\end{document})-expansion and exponential rational function [J].
Xiao-Guang Yue ;
Melike Kaplan ;
Mohammed K. A. Kaabar ;
Hongmei Yang .
Optical and Quantum Electronics, 2023, 55 (1)