共 50 条
[41]
Analytical solutions to the nonlinear space–time fractional models via the extended G′G2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\frac{{G^{\prime } }}{{G^{2} }}} \right)$$\end{document}-expansion method
[J].
Indian Journal of Physics,
2020, 94 (8)
:1237-1247
[42]
On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G'/G^{2}$$\end{document})-expansion method and the modified Kudryashov method
[J].
SeMA Journal,
2019, 76 (1)
:15-25
[43]
The extended-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( \frac{G'}{G}\right)$$\end{document}-expansion method and new exact solutions for the conformable space-time fractional diffusive predator-prey system
[J].
Scientific Reports,
15 (1)
[44]
Soliton solutions of nonlinear coupled Davey–Stewartson Fokas system using modified auxiliary equation method and extended (G′/G2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(G'/G^{2})$$\end{document}-expansion method
[J].
Scientific Reports,
14 (1)
[45]
Initial value problem for the (2+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2+1)$$\end{document}-dimensional time-fractional generalized convection–reaction–diffusion wave equation: invariant subspaces and exact solutions
[J].
Computational and Applied Mathematics,
2022, 41 (1)
[46]
Dispersive optical soliton solutions of the (2+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2 + 1)$$\end{document}-dimensional cascaded system governing by coupled nonlinear Schrödinger equation with Kerr law nonlinearity in plasma
[J].
Optical and Quantum Electronics,
2023, 55 (4)
[47]
The ϕ6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi ^{6}$$\end{document}-model expansion method for solving the nonlinear conformable time-fractional Schrödinger equation with fourth-order dispersion and parabolic law nonlinearity
[J].
Optical and Quantum Electronics,
2018, 50 (3)
[48]
The (2+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2 + 1)$$\end{document}-dimensional generalized time-fractional Zakharov Kuznetsov Benjamin Bona Mahony equation: its classical and nonclassical symmetries, exact solutions, and conservation laws
[J].
Optical and Quantum Electronics,
2023, 55 (12)
[49]
Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′G,1G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$( \frac{G'}{G},\frac{1}{G} ) $\end{document}-expansion method
[J].
Advances in Difference Equations,
2018 (1)
[50]
Exploring new features for the (2+1)-dimensional Kundu–Mukherjee–Naskar equation via the techniques of (G′/G,1/G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G^{\prime }/G,1/G$$\end{document})-expansion and exponential rational function
[J].
Optical and Quantum Electronics,
2023, 55 (1)