Cartesian Solutions for the Incompressible Density-Dependent Euler–Poisson Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{N}$$\end{document}

被引:0
|
作者
Jie Yang
Manwai Yuen
机构
[1] Beijing University of Chinese Medicine,School of Chinese Meteria Medica
[2] The Education University of Hong Kong,Department of Mathematics and Information Technology
关键词
Incompressible; Euler–Poisson equations; Density-dependent; Exact solutions; Quadratic form; Curve integration; 35Q31; 35C05; 76B03; 76M60;
D O I
10.1007/s40819-016-0189-0
中图分类号
学科分类号
摘要
This paper uses matrix and curve integration theory to theoretically show the existence of Cartesian vector solutions for the incompressible density-dependent Euler–Poisson equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}^{N}$$\end{document} with N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}. Instead of analytically solving the equations, our approach algebraically constructs appropriate matrices. Once the required matrices are chosen, the solution can be directly obtained.
引用
收藏
页码:1549 / 1556
页数:7
相关论文
共 50 条