Computation of the First Stiefel–Whitney Class for the Variety ℳ0.nℝ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{\mathrm{\mathcal{M}}}_{0.n}^{\mathbb{R}}} $$\end{document}

被引:0
作者
N. Ya. Amburg
E. M. Kreines
机构
[1] Institute for Theoretical and Experimental Physics,National Research University Higher School of Economics
[2] International Laboratory of Representation Theory and Mathematical Physics,undefined
[3] Lomonosov Moscow State University,undefined
关键词
Modulus Space; Marked Point; Boundary Cell; Opposite Orientation; Maximal Dimension;
D O I
10.1007/s10958-015-2495-1
中图分类号
学科分类号
摘要
We compute the class Wn−4ℳ0.nℝ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{\mathrm{\mathcal{M}}}_{0.n}^{\mathbb{R}}} $$\end{document}, which is Poincaré dual to the first Stiefel–Whitney class for the variety ℳ0.nℝ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{\mathrm{\mathcal{M}}}_{0.n}^{\mathbb{R}}} $$\end{document} in terms of the natural cell decomposition of ℳ0.nℝ¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{\mathrm{\mathcal{M}}}_{0.n}^{\mathbb{R}}}. $$\end{document}
引用
收藏
页码:192 / 211
页数:19
相关论文
共 7 条
  • [1] Deligne P(1969)The irreducibility of the space of curves of given genus Inst. Hautes Études Sci. Publ. Math. 36 75-109
  • [2] Mumford D(1999)Tessellations of moduli spaces and the mosaic operad Contemp. Math. 239 91-114
  • [3] Devadoss S(1972)Stiefel–Whitney homology classes Ann. Math. 96 511-525
  • [4] Halperin S(1993)The permuto-associahedron, MacLane coherence theorem and the asymptotic zones for the KZ equation J. Pure Appl. Algebra 85 119-142
  • [5] Toledo D(1992)Intersection theory of moduli space of stable n-pointed curves of genus zero Trans. Am. Math. Sartoc. 330 545-574
  • [6] Kapranov M(undefined)undefined undefined undefined undefined-undefined
  • [7] Keel S(undefined)undefined undefined undefined undefined-undefined