Hilbert Expansion from the Boltzmann Equation to Relativistic Fluids

被引:0
作者
Jared Speck
Robert M. Strain
机构
[1] University of Cambridge,Department of Pure Mathematics & Mathematical Statistics
[2] University of Pennsylvania,Department of Mathematics
来源
Communications in Mathematical Physics | 2011年 / 304卷
关键词
Boltzmann Equation; Local Existence; Collision Operator; Hydrodynamic Limit; Macroscopic Quantity;
D O I
暂无
中图分类号
学科分类号
摘要
We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellians. The Maxwellians are constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.
引用
收藏
页码:229 / 280
页数:51
相关论文
共 60 条
  • [1] Bardos C.(1993)Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation Comm. Pure Appl. Math. 46 667-753
  • [2] Golse F.(1998)Acoustic and Stokes limits for the Boltzmann equation C. R. Acad. Sci. Paris Sér. I Math. 327 323-328
  • [3] Levermore C.D.(1989)Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles C. R. Acad. Sci. Paris Sér. I Math. 309 727-732
  • [4] Bardos C.(1991)Fluid dynamic limits of kinetic equations. I. Formal derivations J. Statist. Phys. 63 323-344
  • [5] Golse F.(1991)The classical incompressible Navier-Stokes limit of the Boltzmann equation Math. Models Methods Appl. Sci. 1 235-257
  • [6] Levermore C.D.(1989)Relativistic Boltzmann theory in Ann. Physics 195 376-419
  • [7] Bardos C.(1980) + 1 spacetime dimensions Comm. Pure Appl. Math. 33 651-666
  • [8] Golse F.(2007)The fluid dynamic limit of the nonlinear Boltzmann equation Bull. Amer. Math. Soc. (N.S.) 44 581-602
  • [9] Levermore D.(1989)The Euler equations of compressible fluid flow Comm. Pure Appl. Math. 42 1189-1214
  • [10] Bardos C.(1989)Incompressible Navier-Stokes and Euler limits of the Boltzmann equation Ann. of Math. (2) 130 321-366