A Neumann problem in exterior domain

被引:0
作者
Daomin Cao
Marcello Lucia
Huan-Song Zhou
机构
[1] Institute of Applied Mathematics,
[2] AMMS,undefined
[3] Chinese Academy of Sciences,undefined
[4] Beijing 100080,undefined
[5] P.R. China,undefined
[6] Università degli Studi di Roma “Tor Vergata”,undefined
[7] Dipartimento di Matematica,undefined
[8] Via della Ricerca Scientifica,undefined
[9] 00133 Roma,undefined
[10] Italy,undefined
[11] Young Scientist Laboratory of Mathematical Physics,undefined
[12] Wuhan Institute of Physics and Mathematics,undefined
[13] Chinese Academy of Sciences,undefined
[14] P.O.Box 71010,undefined
[15] Wuhan 430071,undefined
[16] P.R. China,undefined
来源
manuscripta mathematica | 2001年 / 106卷
关键词
Neumann Problem; Exterior Domain; Radial Solution; Interior Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the existence of radial solutions for the following Neumann problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Ω is an exterior domain in ℝN, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} denotes the normal interior derivative on ∂Ω and g satisfies certain assumptions.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 50 条
[41]   Positive radial solutions for the problem with Minkowski-curvature operator on an exterior domain [J].
Zhao, Zhongzi ;
Yan, Meng .
AIMS MATHEMATICS, 2023, 8 (09) :20654-20664
[42]   Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain [J].
Yang, Rui ;
Lee, Yong-Hoon ;
Sim, Inbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) :4464-4490
[43]   Existence of a ground state solution for an elliptic problem with critical growth in an exterior domain [J].
Montenegro, Marcelo ;
Abreu, Rafael .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 :341-349
[45]   POSITIVE RADIAL SOLUTIONS OF A QUASILINEAR PROBLEM IN AN EXTERIOR DOMAIN WITH VANISHING BOUNDARY CONDITIONS [J].
Carlos Guajardo, Juan ;
Lorca, Sebastian ;
Mahadevan, Rajesh .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) :569-595
[46]   Nonlinear p-Laplacian Problem Involving a Hardy Potential in Exterior Domain [J].
Kesarwani, Akanksha ;
Kar, Rasmita .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2025,
[47]   The numerical solution of exterior Neumann problem for Helmholtz's equation via modified Green's functions approach [J].
Lin, TC ;
Warnapala-Yehiya, Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) :593-609
[48]   The asymptotics of the solution to the neumann spectral problem in a domain of the "dense-comb" type [J].
Melnik T.A. ;
Nazarov S.A. .
Journal of Mathematical Sciences, 1997, 85 (6) :2326-2346
[49]   The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain [J].
Ergashev, T. G. ;
Tulakova, Z. R. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) :199-206
[50]   Local existence of solutions for the Neumann problem of the nonlinear elastodynamic system outside a domain [J].
Lu, Hong ;
Xin, Jie ;
Hu, Jiaqian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :463-479