A Neumann problem in exterior domain

被引:0
作者
Daomin Cao
Marcello Lucia
Huan-Song Zhou
机构
[1] Institute of Applied Mathematics,
[2] AMMS,undefined
[3] Chinese Academy of Sciences,undefined
[4] Beijing 100080,undefined
[5] P.R. China,undefined
[6] Università degli Studi di Roma “Tor Vergata”,undefined
[7] Dipartimento di Matematica,undefined
[8] Via della Ricerca Scientifica,undefined
[9] 00133 Roma,undefined
[10] Italy,undefined
[11] Young Scientist Laboratory of Mathematical Physics,undefined
[12] Wuhan Institute of Physics and Mathematics,undefined
[13] Chinese Academy of Sciences,undefined
[14] P.O.Box 71010,undefined
[15] Wuhan 430071,undefined
[16] P.R. China,undefined
来源
manuscripta mathematica | 2001年 / 106卷
关键词
Neumann Problem; Exterior Domain; Radial Solution; Interior Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the existence of radial solutions for the following Neumann problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Ω is an exterior domain in ℝN, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} denotes the normal interior derivative on ∂Ω and g satisfies certain assumptions.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 50 条
[31]   The Neumann problem for a mixed-type equation in a rectangular domain [J].
A. A. Bakhristova .
Russian Mathematics, 2009, 53 (11) :9-15
[32]   Neumann boundary value problem for the Beltrami equation in a ring domain [J].
Gencturk, Ilker .
TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (05) :1573-1584
[33]   On the spectrum of the Neumann problem for Laplace equation in a domain with a narrow slit [J].
Gadyl'shin, Rustem R. ;
Il'in, Arlen M. .
ASYMPTOTIC ANALYSIS, 2010, 67 (3-4) :167-189
[34]   The Neumann Problem for a Mixed-Type Equation in a Rectangular Domain [J].
Bakhristova, A. A. .
RUSSIAN MATHEMATICS, 2009, 53 (11) :9-15
[35]   Homogenization of the Neumann problem in a domain a part of which is a set of channels [J].
Shaposhnikova, TA .
DIFFERENTIAL EQUATIONS, 2001, 37 (09) :1315-1323
[36]   Infinitely Many Solutions for an Elliptic Problem with Critical Exponent in Exterior Domain [J].
Wang Liping .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (01) :80-104
[37]   The interior Neumann problem for the Stokes resolvent system in a bounded domain in Rn [J].
Kohr, M. .
ARCHIVES OF MECHANICS, 2007, 59 (03) :283-304
[38]   A Neumann problem for the p(x)-Laplacian with p=1 in a sub domain [J].
Karagiorgos, Yiannis ;
Yannakakis, Nikos .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (01) :412-428
[39]   NUMERICAL SOLUTION TO THE NEUMANN PROBLEM IN A LIPSCHITZ DOMAIN, BASED ON RANDOM WALKS [J].
Lupascu-stamate, Oana ;
Stanciulescu, Vasile .
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (03) :187-192
[40]   The behavior of the free boundary for reaction-diffusion equations with convection in an exterior domain with Neumann or Dirichlet boundary condition [J].
Pinsky, Ross G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) :5075-5102