A Neumann problem in exterior domain

被引:0
作者
Daomin Cao
Marcello Lucia
Huan-Song Zhou
机构
[1] Institute of Applied Mathematics,
[2] AMMS,undefined
[3] Chinese Academy of Sciences,undefined
[4] Beijing 100080,undefined
[5] P.R. China,undefined
[6] Università degli Studi di Roma “Tor Vergata”,undefined
[7] Dipartimento di Matematica,undefined
[8] Via della Ricerca Scientifica,undefined
[9] 00133 Roma,undefined
[10] Italy,undefined
[11] Young Scientist Laboratory of Mathematical Physics,undefined
[12] Wuhan Institute of Physics and Mathematics,undefined
[13] Chinese Academy of Sciences,undefined
[14] P.O.Box 71010,undefined
[15] Wuhan 430071,undefined
[16] P.R. China,undefined
来源
manuscripta mathematica | 2001年 / 106卷
关键词
Neumann Problem; Exterior Domain; Radial Solution; Interior Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the existence of radial solutions for the following Neumann problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where Ω is an exterior domain in ℝN, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} denotes the normal interior derivative on ∂Ω and g satisfies certain assumptions.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 50 条
[21]   High-Frequency Estimates on Boundary Integral Operators for the Helmholtz Exterior Neumann Problem [J].
Galkowski, J. ;
Marchand, P. ;
Spence, E. A. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (04)
[22]   Neumann problem for the Helmholtz equation in the exterior of nonclosed surfaces and the case of its explicit solution [J].
P. A. Krutitskii .
Doklady Mathematics, 2012, 86 :805-808
[23]   Neumann eigenvalue problems on the exterior domains [J].
Anoop, T., V ;
Biswas, Nirjan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :339-351
[24]   Bubble solutions for an elliptic problem with critical growth in exterior domain [J].
Wei, Juncheng ;
Yan, Shusen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 :46-61
[25]   STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN [J].
Amrouche, Cherif ;
Meslameni, Mohamed .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[26]   HOLDER ESTIMATES FOR THE NEUMANN PROBLEM IN A DOMAIN WITH HOLES AND A RELATION FORMULA BETWEEN THE DIRICHLET AND NEUMANN PROBLEMS [J].
Canulef-Aguilar, Victor ;
Henao, Duvan .
HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (04) :973-1004
[27]   Neumann boundary value problem for Bitsadze equation in a ring domain [J].
İlker Gençtürk ;
Kerim Koca .
The Journal of Analysis, 2020, 28 :799-815
[28]   Asymptotics of the solution to the Neumann problem in a thin domain with sharp edge [J].
Nazarov S.A. ;
Taskinen J. .
Journal of Mathematical Sciences, 2007, 142 (6) :2630-2644
[29]   Neumann boundary value problem for Bitsadze equation in a ring domain [J].
Gencturk, Ilker ;
Koca, Kerim .
JOURNAL OF ANALYSIS, 2020, 28 (03) :799-815
[30]   The Neumann problem for a mixed-type equation in a rectangular domain [J].
A. A. Bakhristova .
Russian Mathematics, 2009, 53 (11) :9-15