Fully dynamic bin packing revisited

被引:0
作者
Sebastian Berndt
Klaus Jansen
Kim-Manuel Klein
机构
[1] Kiel University,
[2] EPFL,undefined
来源
Mathematical Programming | 2020年 / 179卷
关键词
Primary: 68W27 (Online algorithms); Secondary: 68W25 (Approximation algorithms);
D O I
暂无
中图分类号
学科分类号
摘要
We consider the fully dynamic bin packing problem, where items arrive and depart in an online fashion and repacking of previously packed items is allowed. The goal is, of course, to minimize both the number of bins used as well as the amount of repacking. A recently introduced way of measuring the repacking costs at each timestep is the migration factor, defined as the total size of repacked items divided by the size of an arriving or departing item. Concerning the trade-off between number of bins and migration factor, if we wish to achieve an asymptotic competitive ratio of 1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 + \epsilon $$\end{document} for the number of bins, a relatively simple argument proves a lower bound of Ω(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ({1}/{\epsilon })$$\end{document} for the migration factor. We establish a nearly matching upper bound of O(1/ϵ4log1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({1}/{\epsilon }^4 \log {1}/{\epsilon })$$\end{document} using a new dynamic rounding technique and new ideas to handle small items in a dynamic setting such that no amortization is needed. The running time of our algorithm is polynomial in the number of items nand in 1/ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1}/{\epsilon }$$\end{document}. The previous best trade-off was for an asymptotic competitive ratio of 5/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${5}/{4}$$\end{document} for the bins (rather than 1+ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\epsilon $$\end{document}) and needed an amortized number of O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} repackings (while in our scheme the number of repackings is independent of n and non-amortized).
引用
收藏
页码:109 / 155
页数:46
相关论文
共 51 条
  • [1] Balogh J(2008)Lower bound for the online bin packing problem with restricted repacking SIAM J. Comput. 38 398-410
  • [2] Békési J(1998)Using fast matrix multiplication to find basic solutions Theor. Comput. Sci. 205 307-316
  • [3] Galambos G(2008)Dynamic bin packing of unit fractions items Theor. Comput. Sci. 409 521-529
  • [4] Reinelt G(2009)On dynamic bin packing: an improved lower bound and resource augmentation analysis Algorithmica 53 172-206
  • [5] Beling P(2017)Approximation and online algorithms for multidimensional bin packing: a survey Comput. Sci. Rev. 24 63-79
  • [6] Megiddo N(1983)Dynamic bin packing SIAM J. Comput. 12 227-258
  • [7] Chan J(1957)The trim problem Manag. Sci. 3 279-284
  • [8] Lam T(2009)A robust APTAS for the classical bin packing problem Math. Program. 119 33-49
  • [9] Wong P(2013)Robust approximation schemes for cube packing SIAM J. Optim. 23 1310-1343
  • [10] Chan J(2000)Algorithms for the relaxed online bin-packing model J. Comput. 30 1532-1551