Trace element partitioning in the lunar magma ocean: an experimental study

被引:4
作者
Haupt, Cordula P. [1 ]
Renggli, Christian J. [1 ,2 ]
Rohrbach, Arno [1 ]
Berndt, Jasper [1 ]
Schwinger, Sabrina [3 ]
Maurice, Maxime [4 ,5 ]
Schulze, Maximilian [6 ]
Breuer, Doris [3 ]
Klemme, Stephan [1 ]
机构
[1] Univ Munster, Inst Mineral, Corrensstr 24, D-48149 Munster, Germany
[2] Max Planck Inst Sonnensystemforsch, Justus Von Liebig Weg 3, D-37077 Gottingen, Germany
[3] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Planetenforsch, Rutherfordstr 2, D-12489 Berlin, Germany
[4] Rice Univ, Dept Earth Environm & Planetary Sci, Houston, TX USA
[5] CNRS, IPSL, Lab Meteorol Dynam, 4 Pl Jussieu, F-75252 Paris, France
[6] Univ Cologne, Inst Geol & Mineral, Zulpicher Str 49B, D-50674 Cologne, Germany
关键词
Experimental petrology; Geochemistry; partition coefficient; LAICPMS; Lunar magma ocean; Oxygen fugacity; Moon; High pressure experiment; Trace element partitioning; urKREEP; SILICATE MELTS; BASALTIC MELTS; RARE-EARTH; SM-ND; FRACTIONAL CRYSTALLIZATION; OXYGEN FUGACITY; CHEMICAL-MODEL; MARE BASALTS; CLINOPYROXENE; MOON;
D O I
10.1007/s00410-024-02118-z
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Modeling the behavior of trace elements during lunar magma ocean solidification is important to further our understanding of the chemical evolution of the Moon. Lunar magma ocean evolution models rely on consistent datasets on how trace elements partition between a lunar silicate melt and coexisting minerals at different pressures, temperatures, and redox conditions. Here we report new experimental trace element partition coefficients (D) between clinopyroxene (cpx), pigeonite, orthopyroxene, plagioclase, olivine (ol), and silicate melt at conditions relevant for the lunar magma ocean. The data include Dcpx-melt at ambient and high pressures (1.5 GPa and 1310 degrees C), and partition coefficients at ambient pressure for pig, opx, ol, and pl. Overall, clinopyroxene is a phase that may control the fractionation of key geochemical trace element ratios, such as Lu/Hf and Sm/Nd, during the evolution of the lunar magma ocean. We explore the impact of the new silicate Dmineral-melt on the trace element evolution of the lunar magma ocean and we find that accessory phosphate minerals, such as apatite or whitlockite are of critical importance to explain the observed trace element and isotopic signature of the KREEP reservoir on the Moon. The new partition coefficients were applied to calculate the trace element evolution of the residual melts of the crystallizing lunar magma ocean and we propose a new trace element composition for the urKREEP reservoir. The new data will be useful for future thermo-chemical models in order to adequately predict the duration of the lunar magma ocean and the age of the Moon.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite
    Elardo, Stephen M.
    Draper, David S.
    Shearer, Charles K., Jr.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2011, 75 (11) : 3024 - 3045
  • [32] Geochemical constraints on the link between lunar magma ocean cumulates and the source of Chang'E-5 basalts from olivine trace element abundances
    Wu, Yong
    Jing, Jie-Jun
    Li, Zi-Ying
    Qin, Ming-Kuan
    Su, Ben-Xun
    Zhong, Jun
    Guo, Dong-Fa
    Fan, Guang
    Liu, Rui-Ping
    He, Sheng
    Li, Ting
    Ge, Xiang-Kun
    Li, Jun-Jie
    Huang, Zhi-Xin
    Deng, Liu-Min
    Tai, Zhong-Yao
    Yu, Apeng
    van Westrenen, Wim
    ICARUS, 2025, 430
  • [33] Effect of crustal porosity on lunar magma ocean solidification
    Zhang, Mingming
    Xu, Yingkui
    Li, Xiongyao
    ACTA GEOCHIMICA, 2021, 40 (02) : 123 - 134
  • [34] The phases of the Moon: Modelling crystallisation of the lunar magma ocean through equilibrium thermodynamics
    Johnson, T. E.
    Morrissey, L. J.
    Nemchin, A. A.
    Gardiner, N. J.
    Snape, J. F.
    EARTH AND PLANETARY SCIENCE LETTERS, 2021, 556
  • [35] Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon
    Charlier, Bernard
    Grove, Timothy L.
    Namur, Olivier
    Holtz, Francois
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2018, 234 : 50 - 69
  • [36] Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks
    Rubatto, Damela
    Hermann, Jorg
    CHEMICAL GEOLOGY, 2007, 241 (1-2) : 38 - 61
  • [37] Trace Element Partitioning between Olivine and Melt: Analysis of Experimental Data
    Girnis, A. V.
    GEOCHEMISTRY INTERNATIONAL, 2023, 61 (04) : 311 - 323
  • [38] Fractional crystallization of a basal lunar magma ocean: A dense melt-bearing garnetite layer above the core?
    Kraettli, Giuliano
    Schmidt, Max W.
    Liebske, Christian
    ICARUS, 2022, 371
  • [39] Petrogenesis of the Lunar volcanic glasses and Mg-suite: constraints on a post-magma-ocean cumulate overturn
    Li, Rui
    Du, Wei
    Yang, Jing
    ACTA GEOCHIMICA, 2022, 41 (04) : 717 - 729
  • [40] The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes
    Wang, Kun
    Jacobsen, Stein B.
    Sedaghatpour, Fatemeh
    Chen, Heng
    Korotev, Randy L.
    EARTH AND PLANETARY SCIENCE LETTERS, 2015, 430 : 202 - 208