Asymptotic Stability of Riemann–Liouville Fractional Resolvent Families

被引:0
|
作者
Li Chen-Yu
机构
[1] Chengdu University,College of Computer Science
来源
Results in Mathematics | 2023年 / 78卷
关键词
Fractional resolvent families; ergodic property; stability; ordered Banach space; resolvent positive operators; positive operators; 35R11, 45K05, 34G10, 47B60, 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the asymptotic stability of Riemann–Liouville fractional resolvent families (R–L resolvent families) on Banach spaces and ordered Banach spaces. If the generator A satisfies some natural requirement, we show that an α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-times R–L resolvent family {Rα(t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{R_\alpha (t)\}$$\end{document} with generator A is uniformly stable iff 0∈ρ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \rho (A)$$\end{document}; Next, we prove the subordination principle of R–L resolvent family. For a positive t0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{0}$$\end{document}-bounded α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-times R–L resolvent family on an ordered Banach space, we show that it can not be uniformly stable if α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}; in the case of α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, we show that A generates a positive R–L resolvent family iff -A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-A$$\end{document} is a sectorial operator with ω(-A)≤π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (-A)\le \frac{\pi }{2}$$\end{document}. Several results on orbit stability are also given by using contour integrals, Tauberian theorems and subordination principles.
引用
收藏
相关论文
共 50 条
  • [41] On the Existence and Stability of Solutions for a Class of Fractional Riemann-Liouville Initial Value Problems
    Castro, Luis P.
    Silva, Anabela S. S.
    MATHEMATICS, 2023, 11 (02)
  • [42] On the Hyers–Ulam stability of Riemann–Liouville multi-order fractional differential equations
    D. X. Cuong
    Afrika Matematika, 2019, 30 : 1041 - 1047
  • [43] Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    MATHEMATICS, 2021, 9 (04) : 1 - 16
  • [44] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Khan, Aziz
    Syam, Muhammed I.
    Zada, Akbar
    Khan, Hasib
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07):
  • [45] Stability Analysis of a Class of Nonlinear Fractional Differential Systems With Riemann-Liouville Derivative
    Zhang, Ruoxun
    Yang, Shiping
    Feng, Shiwen
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (08) : 1883 - 1885
  • [46] Stability Analysis of a Class of Nonlinear Fractional Differential Systems With Riemann-Liouville Derivative
    Ruoxun Zhang
    Shiping Yang
    Shiwen Feng
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (08) : 1883 - 1885
  • [47] Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives
    Aziz Khan
    Muhammed I. Syam
    Akbar Zada
    Hasib Khan
    The European Physical Journal Plus, 133
  • [48] A novel algebraic characteristic of fractional resolvent families
    Jie Mei
    Chuang Chen
    Miao Li
    Semigroup Forum, 2019, 99 : 293 - 302
  • [49] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [50] A novel algebraic characteristic of fractional resolvent families
    Mei, Jie
    Chen, Chuang
    Li, Miao
    SEMIGROUP FORUM, 2019, 99 (02) : 293 - 302