Asymptotic Stability of Riemann–Liouville Fractional Resolvent Families

被引:0
|
作者
Li Chen-Yu
机构
[1] Chengdu University,College of Computer Science
来源
Results in Mathematics | 2023年 / 78卷
关键词
Fractional resolvent families; ergodic property; stability; ordered Banach space; resolvent positive operators; positive operators; 35R11, 45K05, 34G10, 47B60, 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the asymptotic stability of Riemann–Liouville fractional resolvent families (R–L resolvent families) on Banach spaces and ordered Banach spaces. If the generator A satisfies some natural requirement, we show that an α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-times R–L resolvent family {Rα(t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{R_\alpha (t)\}$$\end{document} with generator A is uniformly stable iff 0∈ρ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \rho (A)$$\end{document}; Next, we prove the subordination principle of R–L resolvent family. For a positive t0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{0}$$\end{document}-bounded α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-times R–L resolvent family on an ordered Banach space, we show that it can not be uniformly stable if α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}; in the case of α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, we show that A generates a positive R–L resolvent family iff -A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-A$$\end{document} is a sectorial operator with ω(-A)≤π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (-A)\le \frac{\pi }{2}$$\end{document}. Several results on orbit stability are also given by using contour integrals, Tauberian theorems and subordination principles.
引用
收藏
相关论文
共 50 条
  • [21] On fractional powers of generators of fractional resolvent families
    Li, Miao
    Chen, Chuang
    Li, Fu-Bo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) : 2702 - 2726
  • [22] Variational formulation and asymptotic analysis of viscoelastic problem with Riemann-Liouville fractional derivatives
    Dilmi, Mohamed
    Dilmi, Mourad
    Benseridi, Hamid
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2294 - 2313
  • [23] Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative
    Le Dinh Long
    Ho Duy Binh
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Huu Can
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6194 - 6216
  • [24] Solvability and stability for fractional differential equations involving two Riemann-Liouville fractional orders
    Houas, M.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (08) : 1699 - 1715
  • [25] Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives
    Sene, Ndolane
    AIMS MATHEMATICS, 2019, 4 (01): : 147 - 165
  • [26] On boundary values of fractional resolvent families
    Chen, Chuang
    Li, Miao
    Li, Fu-Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 453 - 467
  • [27] Asymptotical stability and synchronization of Riemann-Liouville fractional delayed neural networks
    Zhang, Yufeng
    Li, Jing
    Zhu, Shaotao
    Wang, Hongwu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [28] Stability analysis of fractional-order systems with the Riemann-Liouville derivative
    Qin, Zhiquan
    Wu, Ranchao
    Lu, Yanfen
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01): : 727 - 731
  • [29] Uniform stability of resolvent families
    Lizama, C
    Vergara, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 175 - 181
  • [30] ASYMPTOTIC BEHAVIOR OF FRACTIONAL ORDER RIEMANN-LIOUVILLE VOLTERRA-STIELTJES INTEGRAL EQUATIONS
    Abbas, Said
    Benchohra, Mouffak
    Slimani, Boualem A.
    Trujillo, Juan J.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2015, 27 (03) : 311 - 323