Asymptotic Stability of Riemann–Liouville Fractional Resolvent Families

被引:0
|
作者
Li Chen-Yu
机构
[1] Chengdu University,College of Computer Science
来源
Results in Mathematics | 2023年 / 78卷
关键词
Fractional resolvent families; ergodic property; stability; ordered Banach space; resolvent positive operators; positive operators; 35R11, 45K05, 34G10, 47B60, 47D06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the asymptotic stability of Riemann–Liouville fractional resolvent families (R–L resolvent families) on Banach spaces and ordered Banach spaces. If the generator A satisfies some natural requirement, we show that an α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-times R–L resolvent family {Rα(t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{R_\alpha (t)\}$$\end{document} with generator A is uniformly stable iff 0∈ρ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \rho (A)$$\end{document}; Next, we prove the subordination principle of R–L resolvent family. For a positive t0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{0}$$\end{document}-bounded α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-times R–L resolvent family on an ordered Banach space, we show that it can not be uniformly stable if α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}; in the case of α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, we show that A generates a positive R–L resolvent family iff -A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-A$$\end{document} is a sectorial operator with ω(-A)≤π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (-A)\le \frac{\pi }{2}$$\end{document}. Several results on orbit stability are also given by using contour integrals, Tauberian theorems and subordination principles.
引用
收藏
相关论文
共 50 条