Generators of KMS Symmetric Markov Semigroups on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}({\rm h})}$$\end{document} Symmetry and Quantum Detailed Balance

被引:1
作者
Franco Fagnola
Veronica Umanità
机构
[1] Politecnico di Milano,Departiment of Mathematics
[2] University of Genoa,Departiment of Mathematics
关键词
Time Reversal; Dirichlet Form; Detailed Balance; Trace Class Operator; Markov Semigroup;
D O I
10.1007/s00220-010-1011-1
中图分类号
学科分类号
摘要
We find the structure of generators of norm-continuous quantum Markov semigroups on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}({\rm h})}$$\end{document} that are symmetric with respect to the scalar product tr (ρ1/2x*ρ1/2y) induced by a faithful normal invariant state ρ and satisfy two quantum generalisations of the classical detailed balance condition related with this non-commutative notion of symmetry: the so-called standard detailed balance condition and the standard detailed balance condition with an antiunitary time reversal.
引用
收藏
页码:523 / 547
页数:24
相关论文
共 34 条
  • [1] Albeverio S.(2002)A remark on the structure of symmetric quantum dynamical semigroups Inf. Dim. Anal. Quant. Prob. Relat. Top. 5 571-579
  • [2] Goswami D.(2004)Dynamical detailed balance and local KMS condition for non-equilibrium states Int. J. Mod. Phys. B 18 435-467
  • [3] Accardi L.(1999)Time reflected markov processes Inf. Dim. Anal. Quant. Prob. Relat. Top. 2 397-426
  • [4] Imafuku K.(1973)Open quantum Markovian systems and the microreversibility Z. Physik 258 409-422
  • [5] Accardi L.(1976)On the detailed balance condition for non-Hamiltonian systems Rep. Math. Phys. 10 249-258
  • [6] Mohari A.(1997)Dirichlet forms and markovian semigroups on standard forms of von neumann algebras J. Funct. Anal. 147 259-300
  • [7] Agarwal G.S.(1992)Non-commutative symmetric Markov semigroups Math. Z. 210 379-411
  • [8] Alicki R.(2007)Generators of detailed balance quantum markov semigroups Inf. Dim. Anal. Quant. Prob. Relat. Top. 10 335-363
  • [9] Cipriani F.(1993)Beurling-Deny condition for KMS-symmetric dynamical semigroups C. R. Acad. Sci. Paris 317 1053-1057
  • [10] Davies E.B.(1995)KMS symmetric semigroups Math. Z. 219 591-608