\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{\mathcal{G}-}$\end{document}Inhomogeneous Markov Systems of High Order

被引:0
作者
P.-C. G. Vassiliou
T. P. Moysiadis
机构
[1] University College London,Department of Statistical Sciences
[2] Aristotle University of Thessaloniki,Department of Mathematics
[3] Aristotle University of Thessaloniki,Department of Mathematics, Statistics and Operation Research section
关键词
Non homogeneous Markov chains; Markov population systems; Asymptotic behaviour; Mixture transition distribution models; 60J10;
D O I
10.1007/s11009-009-9143-5
中图分类号
学科分类号
摘要
In the present, we introduce and study the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G-}$\end{document}inhomogeneous Markov system of high order, which is a more general in many respects stochastic process than the known inhomogeneous Markov system. We define the inhomogeneous superficial razor cut mixture transition distribution model extending for the homogeneous case the idea of the mixture transition model. With the introduction of the appropriate vector stochastic process and the establishment of relationships among them, we study the asymptotic behaviour of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G-}$\end{document}inhomogeneous Markov system of high order. In the form of two theorems, the asymptotic behaviour of the inherent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G-}$\end{document}inhomogeneous Markov chain and the expected and relative expected population structure of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G-}$\end{document}inhomogeneous Markov system of high order, are provided under assumptions easily met in practice. Finally, we provide an illustration of the present results in a manpower system.
引用
收藏
页码:271 / 292
页数:21
相关论文
共 63 条
  • [21] Isaacson D(2006)Modelling multi-stage processes through multivariate distributions J Appl Stat 33 175-187
  • [22] Vinograde B(1981)Operator geometric stationary distributions for Markov chains with applications to queuing models Adv Appl Probab 14 368-391
  • [23] McClean SI(2006)An inhomogeneous Semi-Markov model for the term structure of credit risk spreads Adv Appl Probab 38 171-198
  • [24] Gribbin JO(1976)A Markov chain model for watage in manpower systems Oper Res Q 27 57-70
  • [25] McClean SI(1978)A high order non-linear Markovian model for promotion in manpower systems J R Stat Soc A 137 584-595
  • [26] Gribbin JO(1981)On the limiting behaviour of a nonhomogeneous Markov system Biometrika 68 557-564
  • [27] McClean SI(1982)Asymptotic behavior of Markov systems J Appl Probab 19 815-857
  • [28] Scotney B(1997)The evolution of the theory of non-homogeneous Markov systems Appl Stoch Models Data Anal 13 159-176
  • [29] Robinson S(1992)Nonhomogeneous semi-Markov systems and maintainability of the state sizes J Appl Probab 29 519-534
  • [30] Nilakantan K(1989)The rate of convergence of the vector of variances and covariances in non-homogeneous Markov systems J Appl Probab 27 776-783