On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers

被引:0
作者
Jonathan García
Carlos A. Gómez
机构
[1] Universidad del Valle,Departamento de Matemáticas
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Pillai’s problem; –Pell number; Linear forms in logarithms; Effective solution for exponential Diophantine equation; 11B39; 11D45; 11D61; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
The k–generalized Pell sequence P(k):=(Pn(k))n≥-(k-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{(k)}:=(P_n^{(k)})_{n\ge -(k-2)}$$\end{document} is the linear recurrence sequence of order k, whose first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0, \ldots , 0,1$$\end{document} and satisfies the relation Pn(k)=2Pn-1(k)+Pn-2(k)+⋯+Pn-k(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{n}^{(k)} =2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)}$$\end{document}, for all n,k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n,k\ge 2 $$\end{document}. In this paper, we investigate about integers that have at least two representations as a difference between a k–Pell number and a perfect power. In order to exhibit a solution method when b is known, we find all the integers c that have at least two representations of the form Pn(k)-bm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{n}^{(k)} - b^{m}$$\end{document} for b∈[2,10]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ b\in [2,10]$$\end{document}. This paper extends the previous works in Ddamulira et al. (Proc. Math. Sci. 127: 411–421, 2017) and Erazo et al. (J. Number Theory 203: 294–309, 2019).
引用
收藏
相关论文
共 51 条
  • [1] Adegbindin C(2019)Pell and Pell-Lucas numbers as sums of two repdigits Bull. Malaysian Math. Sci. Soc. 43 1253-1271
  • [2] Luca F(2020)Fibonacci numbers in generalized Pell sequences Math. Slovaca 70 1057-1068
  • [3] Togbé A(2021)Even perfect numbers in generalized pell sequences Lithuanian Math. J. 61 1-12
  • [4] Bravo JJ(2021)On a generalization of the pell sequence Math. Bohemica 146 199-213
  • [5] Herrera JL(2021)Common values of generalized Fibonacci and Pell sequences J. Number Theory 226 51-71
  • [6] Bravo JJ(2017)On Pillai’s problem with Tribonacci numbers and power of 2 Bull. Korean Math. Soc. 54 1069-1080
  • [7] Herrera JL(2017)On a variant of Pillai’s problem Int. J. Number Theory 13 1711-1727
  • [8] Bravo JJ(2018)On a variant of Pillai’s problem J. Number Theory 183 269-290
  • [9] Herrera JL(2018)On a problem of pillai with Monatshefte für Mathematik 187 635-664
  • [10] Luca F(2020)-generalized fibonacci numbers and powers of Int. J. Number Theory 16 1643-1666