Real embedding and equivariant eta forms

被引:1
作者
Bo Liu
机构
[1] East China Normal University,School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2019年 / 292卷
关键词
Equivariant eta form; Index theory and fixed point theory; Higher spectral flow; Direct image; 58J20; 58J28; 58J30; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a modZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {mod}}\, \mathbb {Z}$$\end{document} embedding formula of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden modZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {mod}}\, \mathbb {Z}$$\end{document} term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.
引用
收藏
页码:849 / 878
页数:29
相关论文
共 35 条
[31]  
Ma X(undefined)undefined undefined undefined undefined-undefined
[32]  
Quillen D(undefined)undefined undefined undefined undefined-undefined
[33]  
Segal G(undefined)undefined undefined undefined undefined-undefined
[34]  
Thom R(undefined)undefined undefined undefined undefined-undefined
[35]  
Zhang W(undefined)undefined undefined undefined undefined-undefined