Real embedding and equivariant eta forms

被引:1
作者
Bo Liu
机构
[1] East China Normal University,School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2019年 / 292卷
关键词
Equivariant eta form; Index theory and fixed point theory; Higher spectral flow; Direct image; 58J20; 58J28; 58J30; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
Bismut and Zhang (Math Ann 295(4):661–684, 1993) establish a modZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {mod}}\, \mathbb {Z}$$\end{document} embedding formula of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden modZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {mod}}\, \mathbb {Z}$$\end{document} term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.
引用
收藏
页码:849 / 878
页数:29
相关论文
共 35 条
[1]  
Atiyah MF(1959)Riemann–Roch theorems for differentiable manifolds Bull. Am. Math. Soc. 65 276-281
[2]  
Hirzebruch F(1975)Spectral asymmetry and Riemannian geometry. I Math. Proc. Camb. Philos. Soc. 77 43-69
[3]  
Atiyah MF(1969)Index theory for skew-adjoint Fredholm operators Inst. Hautes Études Sci. Publ. Math. 37 5-26
[4]  
Patodi VK(1971)The index of elliptic operators. IV Ann. Math. 2 119-138
[5]  
Singer IM(1986)The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs Invent. Math. 83 91-151
[6]  
Atiyah MF(1995)Equivariant immersions and Quillen metrics J. Differ. Geom. 41 53-157
[7]  
Singer IM(1989)-invariants and their adiabatic limits J. Am. Math. Soc. 2 33-70
[8]  
Atiyah MF(1986)The analysis of elliptic families. I. Metrics and connections on determinant bundles Commun. Math. Phys. 106 159-176
[9]  
Singer IM(2004)Holomorphic immersions and equivariant torsion forms J. Reine Angew. Math. 575 189-235
[10]  
Bismut J-M(1993)Real embeddings and eta invariants Math. Ann. 295 661-684