On the computation of the numerical blow-up time

被引:0
作者
Chien-Hong Cho
机构
[1] National Chung Cheng University,Department of Mathematics
来源
Japan Journal of Industrial and Applied Mathematics | 2013年 / 30卷
关键词
Blow-up; Finite difference method; Numerical blow-up time; 65L12; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
For certain evolution equations, we mean by the word “blow-up” that the solutions become unbounded in finite time T. The finite time T is called the blow-up time. In this paper, we propose an algorithm to compute the blow-up time by using a finite difference scheme with uniform temporal grid size.
引用
收藏
页码:331 / 349
页数:18
相关论文
共 15 条
  • [1] Abia L.(2001)The Euler method in the numerical integration of reaction-diffusion problems with blow-up Appl. Numer. Math. 38 287-313
  • [2] López-Marcos J.C.(1998)Blow-up in diffusion equations: a survey J. Comp. Appl. Math. 97 3-22
  • [3] Martínez J.(1986)Asymptotic behaviours of blowing-up solutions for finite difference analogue of J. Fac. Sci. Univ. Tokyo 33 541-574
  • [4] Bandle H.(2011) =  Appl. Math. Lett. 24 49-54
  • [5] Brunner C.(2007) +  Japan J. Ind. Appl. Math. 24 131-160
  • [6] Chen Y.G.(1985)On the convergence of numerical blow-up time for a second order nonlinear ordinary differential equation Indiana Univ. Math. J. 34 425-447
  • [7] Cho C-.H.(2006)On the finite differnece approximation for a parabolic blow-up problem Computing 76 325-352
  • [8] Cho C.H.(1990)Blow-up of positive solutions of semilinear heat equation SIAM Rev. 32 262-288
  • [9] Hamada S.(1976)Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions Appl. Math. Optim. 2 337-350
  • [10] Okamoto H.(undefined)The role of critical exponents in blow up theorems undefined undefined undefined-undefined