A novel technique for quantifying changes in vascular density, endothelial cell proliferation and protein expression in response to modulators of angiogenesis using the chick chorioallantoic membrane (CAM) assay

被引:36
作者
Miller W.J. [1 ]
Kayton M.L. [1 ]
Patton A. [2 ]
O'Connor S. [1 ]
He M. [1 ]
Vu H. [1 ]
Baibakov G. [3 ]
Lorang D. [1 ]
Knezevic V. [3 ]
Kohn E. [2 ]
Alexander H.R. [1 ]
Stirling D. [4 ]
Payvandi F. [4 ]
Muller G.W. [4 ]
Libutti S.K. [1 ]
机构
[1] Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda
[2] Laboratory of Pathology, National Institute of Health, Bethesda
[3] 20/20 Gene Systems Inc., Rockville
[4] Celgene Corporation, Warren
关键词
Angiogenesis; Chorioallantoic membrane (CAM); Confocal microscopy; Layered Expression Scanning (LES); XTT assay;
D O I
10.1186/1479-5876-2-4
中图分类号
学科分类号
摘要
Reliable quantitative evaluation of molecular pathways is critical for both drug discovery and treatment monitoring. We have modified the CAM assay to quantitatively measure vascular density, endothelial proliferation, and changes in protein expression in response to anti-angiogenic and pro-angiogenic agents. This improved CAM assay can correlate changes in vascular density with changes seen on a molecular level. We expect that these described modifications will result in a single in vivo assay system, which will improve the ability to investigate molecular mechanisms underlying the angiogenic response. © Miller et al; license BioMed Central Ltd.
引用
收藏
页数:12
相关论文
共 21 条
  • [1] Millauer B., Shawver L.K., Plate K.H., Risau W., Ullrich A., Glioblastoma growth inhibited in-vivo by dominant-negative Flk-1mutant, Nature, 367, pp. 576-579, (1994)
  • [2] Kim K.J., Li B., Winer J., Armanini M., Gillett N., Phillips H.S., Ferrara N., Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in-vivo, Nature, 362, pp. 841-844, (1993)
  • [3] Gasparini G., Harris A.L., Clinical importance of the determination of tumor angiogenesis in breast carcinoma: Much more than a new prognostic tool, J. Clin. Oncol., 13, pp. 765-782, (1995)
  • [4] Yang J.C., Haworth L., Sherry R.M., Hwu P., Schwartzentruber D.J., Topalian S.L., Steinberg S.M., Chen H.X., Rosenberg S.A., A Randomized trial of bevacizumab, an antivascular endothelial growth factor antibody for metastatic renal cancer, N. Engl. J. Med., 349, pp. 427-434, (2003)
  • [5] Giantonio B.J., Levy D., O'Dwyer P.J., Meropol N.J., Catalano P.J., Benson B., Bevacizumab (anti-VEGF) plus IFL irinotecan, fluorouracil. leucovorin) as front line therapy for advanced colorectal cancer (advCRC): Results from the Eastern Cooperative Oncology Group (ECOG) Study E2200, ASCO, (2003)
  • [6] Toi M., Endothelial growth factors: Target of antiangiogenesis, Ovarian Cancer Research notebook, The Cancer Journal, 8, pp. 1-7, (2003)
  • [7] Auerbach W., Auerbach R., Angiogenesis inhibition: A review, Pharmacol. Ther, 63, pp. 265-311, (1994)
  • [8] Auerbach R., Lewis R., Shinners B., Kubai L., Akhtar N., Angiogenesis assays: A critical overview, Clin. Chem., 49, pp. 32-40, (2003)
  • [9] Ribatti D., Vacca A., Roncali L., Dammacco F., The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis, Curr. Pharm. Biotechnol., 1, pp. 73-82, (2000)
  • [10] Ingber D., Fujita T., Kishimoto S., Sudo K., Kanamaru T., Brem H., Folkman J., Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth, Nature, 348, pp. 555-557, (1990)