Asymptotics of the solutions of the one-dimensional nonlinear system of equations of shallow water with degenerate velocity

被引:0
作者
D. S. Minenkov
机构
[1] Russian Academy of Sciences,Ishlinskii Institute for Problems in Mechanics
来源
Mathematical Notes | 2012年 / 92卷
关键词
nonlinear system of equations of shallow water; Carrier-Greenspan transformation; Cauchy problem; Schwartz space; Duhamel integral; Hankel transform;
D O I
暂无
中图分类号
学科分类号
摘要
A system of one-dimensional nonlinear equations of shallow water with degenerate velocity is considered. The change of variables taking the given system to a nonlinear system with small nonlinearity is proposed. Formal asymptotic solutions near the point of degeneracy are obtained.
引用
收藏
页码:664 / 672
页数:8
相关论文
共 11 条
[1]  
Carrier G. F.(1958)Water waves of finite amplitude on a sloping beach J. Fluid Mech. 4 97-381
[2]  
Greenspan H. P.(2002)Geometric asymptotics for a degenerate hyperbolic equation Russ. J. Math. Phys. 9 371-186
[3]  
Vukašinac T.(1992)Localized solutions of one-dimensional non-linear shallow-water equations with velocity Natural Hazards 6 227-447
[4]  
Zhevandrov P.(2010) = √ Uspekhi Mat. Nauk 65 185-undefined
[5]  
Pelinovsky E. N.(2010)Asymptotic solution of one-dimensionalwave equation with localized initial data and with degenerating velocity: I Russ. J. Math. Phys. 17 434-undefined
[6]  
Mazova R. Kh.(undefined)undefined undefined undefined undefined-undefined
[7]  
Dobrokhotov S. Yu.(undefined)undefined undefined undefined undefined-undefined
[8]  
Tirozzi B.(undefined)undefined undefined undefined undefined-undefined
[9]  
Dobrokhotov S. Yu.(undefined)undefined undefined undefined undefined-undefined
[10]  
Nazaikinskii V. E.(undefined)undefined undefined undefined undefined-undefined