Wasserstein Distance on Configuration Space

被引:0
作者
L. Decreusefond
机构
[1] TELECOM ParisTech—LTCI UMR 5141,
来源
Potential Analysis | 2008年 / 28卷
关键词
Configuration space; Monge–Kantorovitch; Optimal transportation problem; Poisson process; 60B05; 60H07; 60G55;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate here the optimal transportation problem on configuration space for the quadratic cost. It is shown that, as usual, provided that the corresponding Wasserstein is finite, there exists one unique optimal measure and that this measure is supported by the graph of the derivative (in the sense of the Malliavin calculus) of a “concave” (in a sense to be defined below) function. For finite point processes, we give a necessary and sufficient condition for the Wasserstein distance to be finite.
引用
收藏
页码:283 / 300
页数:17
相关论文
共 18 条
  • [1] Albeverio S.(1998)Analysis and geometry on configuration spaces J. Funct. Anal. 154 444-500
  • [2] Yu. Kondratiev G.(1992)Stein’s method and point process approximation Stochastic Process. Appl. 43 9-31
  • [3] Rockner M.(2001)Compound Poisson approximation: a user’s guide Ann. Appl. Probab. 11 964-1002
  • [4] Barbour A.D.(2002)Compound Poisson process approximation Ann. Probab. 30 1492-1537
  • [5] Brown T.C.(2000)Estimating Stein’s constants for compound Poisson approximation Bernoulli 6 581-590
  • [6] Barbour A.D.(2004)Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space Probab. Theory Related Fields 128 347-385
  • [7] Chryssaphinou O.(1999)Abstract cyclical monotonicity and Monge solutions for the general Monge–Kantorovich problem Set-Valued Anal. 7 7-32
  • [8] Barbour A.D.(1999)Rademacher’s theorem on configuration spaces and applications J. Funct. Anal. 169 325-356
  • [9] Maansson M.(1996)On Stat. Probab. Lett. 27 267-270
  • [10] Barbour A.D.(2000)-optimal random variables Stochastic Anal. Appl. 18 159-177