A coupled Schrödinger system with critical exponent

被引:1
作者
Haidong Liu
Zhaoli Liu
机构
[1] Jiaxing University,Institute of Mathematics
[2] Capital Normal University,School of Mathematical Sciences
来源
Calculus of Variations and Partial Differential Equations | 2020年 / 59卷
关键词
Coupled Schrödinger system; Critical exponent; Linking theorem; 35B33; 35J47; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
For the coupled Schrödinger system -Δu+V1(x)u=μ1u3+βuv2inR4,-Δv+V2(x)v=βu2v+μ2v3inR4,u≥0,v≥0inR4,u,v∈D1,2(R4),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u+V_1(x)u=\mu _1u^3+\beta uv^2\ \ \text{ in }\ {{\mathbb {R}}}^4,\\&-\Delta v+V_2(x)v=\beta u^2v+\mu _2v^3\ \ \,\text{ in }\ {{\mathbb {R}}}^4,\\&\ u\ge 0,\ v\ge 0\ \ \text{ in }\ {{\mathbb {R}}}^4,\ \ u, v\in D^{1,2}({{\mathbb {R}}}^4), \end{aligned}\right. \end{aligned}$$\end{document}where V1,V2∈L2(R4)∩Lloc∞(R4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_1, V_2\in L^2({{\mathbb {R}}}^4)\,\cap \, L_\mathrm{loc}^\infty ({{\mathbb {R}}}^4)$$\end{document} are nonnegative functions and μ1,μ2,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _1, \mu _2, \beta $$\end{document} are positive constants, we prove that if β>max{μ1,μ2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >\max \{\mu _1, \mu _2\}$$\end{document}, |V1|L2(R4)+|V2|L2(R4)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_1|_{L^2({{\mathbb {R}}}^4)}+|V_2|_{L^2({{\mathbb {R}}}^4)}>0$$\end{document}, and |V1|L2(R4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_1|_{L^2({{\mathbb {R}}}^4)}$$\end{document} and |V2|L2(R4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_2|_{L^2({{\mathbb {R}}}^4)}$$\end{document} are suitably small, a positive solution exists. This generalizes the well known result in [8] by Benci and Cerami on a scalar equation to the above system.
引用
收藏
相关论文
共 74 条
[1]  
Akhmediev N(1999)Partially coherent solitons on a finite background Phys. Rev. Lett. 82 2661-2664
[2]  
Ankiewicz A(2007)Standing waves of some coupled nonlinear Schrödinger equations J. London Math. Soc. 75 67-82
[3]  
Ambrosetti A(1976)Problemes isoperimetriques et espaces de Sobolev J. Differ. Geom. 11 573-598
[4]  
Colorado E(1988)On a nonlinear equation involving the critical Sobolev exponent: the effect of the topology of the domain Commun. Pure Appl. Math. 41 253-294
[5]  
Aubin T(2010)A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system Calc. Var. Partial Differ. Equ. 37 345-361
[6]  
Bahri A(2006)Note on ground states of nonlinear Schrödinger systems J. Partial Differ. Equ. 19 200-207
[7]  
Coron J-M(2007)Bound states for a coupled Schrödinger system J. Fixed Point Theory Appl. 2 353-367
[8]  
Bartsch T(1990)Existence of positive solutions of the equation J. Funct. Anal. 80 90-117
[9]  
Dancer EN(1983) in Proc. Am. Math. Soc. 88 486-490
[10]  
Wang Z-Q(1983)A relation between pointwise convergence of functions and convergence of functionals Commun. Pure Appl. Math. 36 437-477