The eikonal approach to gravitational scattering and radiation at O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(G3)

被引:0
作者
Paolo Di Vecchia
Carlo Heissenberg
Rodolfo Russo
Gabriele Veneziano
机构
[1] University of Copenhagen,The Niels Bohr Institute
[2] NORDITA,Department of Physics and Astronomy
[3] KTH Royal Institute of Technology and Stockholm University,Centre for Research in String Theory, School of Physics and Astronomy
[4] Uppsala University,Theory Department
[5] Queen Mary University of London,undefined
[6] CERN,undefined
[7] Collège de France,undefined
关键词
Black Holes; Classical Theories of Gravity; Scattering Amplitudes; Supergravity Models;
D O I
10.1007/JHEP07(2021)169
中图分类号
学科分类号
摘要
Using N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity as a theoretical laboratory, we extract the 3PM gravitational eikonal for two colliding massive scalars from the classical limit of the corresponding elastic two-loop amplitude. We employ the eikonal phase to obtain the physical deflection angle and to show how its non-relativistic (NR) and ultra-relativistic (UR) regimes are smoothly connected. Such a smooth interpolation rests on keeping contributions to the loop integrals originating from the full soft region, rather than restricting it to its potential sub-region. This task is efficiently carried out by using the method of differential equations with complete near-static boundary conditions. In contrast to the potential-region result, the physical deflection angle includes radiation-reaction contributions that are essential for recovering the finite and universal UR limit implied by general analyticity and crossing arguments. We finally discuss the real emission of massless states, which accounts for the imaginary part of the 3PM eikonal and for the dissipation of energy-momentum. Adopting a direct approach based on unitarity and on the classical limit of the inelastic tree-level amplitude, we are able to treat N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 and General Relativity on the same footing, and to complete the conservative 3PM eikonal in Einstein’s gravity by the addition of the radiation-reaction contribution. We also show how this approach can be used to compute waveforms, as well as the differential and integrated spectra, for the different radiated massless fields.
引用
收藏
相关论文
共 146 条
  • [1] Amati D(1987) → Phys. Lett. B 197 81-undefined
  • [2] Ciafaloni M(1988)undefined Int. J. Mod. Phys. A 3 1615-undefined
  • [3] Veneziano G(1988)undefined Phys. Rev. D 37 359-undefined
  • [4] Amati D(1988)undefined Nucl. Phys. B 306 545-undefined
  • [5] Ciafaloni M(1971)undefined Gen. Rel. Grav. 2 303-undefined
  • [6] Veneziano G(2008)undefined JHEP 02 049-undefined
  • [7] Muzinich IJ(2011)undefined JHEP 09 044-undefined
  • [8] Soldate M(2014)undefined JHEP 10 085-undefined
  • [9] Sundborg B(1992)undefined Nucl. Phys. B 388 570-undefined
  • [10] Aichelburg PC(2019)undefined Phys. Rev. D 100 066028-undefined