Feynman disentangling of noncommuting operators in quantum mechanics

被引:0
作者
V. S. Popov
机构
[1] Russian Academy of Sciences,Institute for Theoretical and Experimental Physics
来源
Journal of Experimental and Theoretical Physics | 2005年 / 101卷
关键词
Field Theory; Hydrogen Atom; Matrix Element; Time Evolution; Elementary Particle;
D O I
暂无
中图分类号
学科分类号
摘要
Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom.
引用
收藏
页码:817 / 829
页数:12
相关论文
共 61 条
[1]  
Feynman R. P.(1951)undefined Phys. Rev. 84 108-undefined
[2]  
Schwinger J.(1953)undefined Phys. Rev. 91 728-undefined
[3]  
Popov V. S.(1958)undefined Zh. Éksp. Teor. Fiz. 35 985-undefined
[4]  
Popov V. S.(2005)undefined Phys. Lett. A 342 281-undefined
[5]  
Shapiro I. S.(1956)undefined Dokl. Akad. Nauk SSSR 106 647-undefined
[6]  
Zastavenko C.-G.-c.(1958)undefined Zh. Éksp. Teor. Fiz. 35 1417-undefined
[7]  
Zastavenko L. G.(1959)undefined Zh. Éksp. Teor. Fiz. 37 1116-undefined
[8]  
Popov V. S.(1953)undefined Prog. Theor. Phys. 9 381-undefined
[9]  
Husimi K.(1969)undefined Zh. Éksp. Teor. Fiz. 56 1375-undefined
[10]  
Popov V. S.(1969)undefined J. Math. Phys. 10 1458-undefined