Sharp constants for a class of multilinear integral operators and some applications

被引:0
作者
Di Wu
DunYan Yan
机构
[1] Sun Yat-Sen University,School of Mathematics and Computational Science
[2] University of Chinese Academy of Sciences,School of Mathematics
来源
Science China Mathematics | 2016年 / 59卷
关键词
best constants; multilinear integral operator; Hardy operator; Hardy-Littlewood-Sobolev inequality; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a class of multilinear integral operators with the nonnegative kernels, and prove that the norms of the operators can be obtained by integral of the product of the kernel function and finitely many basic functions. Using the integral, we can easily calculate the sharp constants for the multilinear Hilbert inequality, the generalized Hardy-Littlewood-Sobolev inequality and the multilinear Hardy operator.
引用
收藏
页码:907 / 920
页数:13
相关论文
共 37 条
  • [1] Beckner W(2008)Pitt’s inequality with sharp convolution estimates Proc Amer Math Soc 136 1871-1885
  • [2] Beckner W(2008)Weighted inequalities and Stein-Weiss potentials Forum Math 20 587-606
  • [3] Benyi A(2006)Best constants for certain multilinear integral operators J Inequal Appl 2006 1-12
  • [4] Oh T(2013)Multiple weighted estimates for commutators of multilinear fractional integral operators Sci China Math 56 1879-1894
  • [5] Chen S Q(1995)Best constants for two nonconvolution inequalities Proc Amer Math Soc 123 1687-1693
  • [6] Wu H X(2015)A Marcinkiewicz criterion for Sci China Math 58 389-404
  • [7] Christ M(1999)-multipliers related to Schrödinger operators with constant magnetic fields Pacific J Math 191 85-94
  • [8] Grafakos L(2001)A Selberg integral formula and applications J Funct Anal 187 1-24
  • [9] Deng L R(1927)A multilinear Schur test and multiplier operators Math Zeit 27 565-606
  • [10] Ma B L(1983)Some properties of fractional integrals I Ann of Math 118 349-374