Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems

被引:0
作者
X. H. Gong
机构
[1] Nanchang University,Department of Mathematics
来源
Journal of Optimization Theory and Applications | 2007年 / 133卷
关键词
Vector equilibrium problems; Globally efficient solutions; Cone-Benson efficient solutions; Scalarization; Path connectedness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the concepts of globally efficient solution and cone-Benson efficient solution for a vector equilibrium problem; we give some scalarization results for Henig efficient solution sets, globally efficient solution sets, weak efficient solution sets, and cone-Benson efficient solution sets in locally convex spaces. Using the scalarization results, we show the connectedness and path connectedness of weak efficient solution sets and various proper efficient solution sets of vector equilibrium problem.
引用
收藏
页码:151 / 161
页数:10
相关论文
共 46 条
[1]  
Ansari Q.H.(1997)A generalization of vector equilibria Math. Methods Oper. Res. 46 147-1527
[2]  
Oettli W.(1997)Vector equilibrium problems with generalized monotone bifunctions J. Optim. Theory Appl. 92 527-542
[3]  
Schläger D.(1990)Vector complementarity problem and its equivalence with weak minimal element in ordered spaces J. Math. Anal. Appl. 153 136-158
[4]  
Bianchi M.(1992)Existence of solution for a vector variational inequality: an extension of the Hartman-Stampacchia theorem J. Optim. Theory Appl. 74 445-456
[5]  
Hadjisavvas N.(1993)Vector variational inequality and its duality Nonlinear Anal. Theory Methods Appl. 21 869-877
[6]  
Schaible S.(1995)On vector variational inequalities J. Optim. Theory Appl. 84 171-180
[7]  
Chen G.Y.(1996)Existence of solution for a generalized vector quasivariational inequality J. Optim. Theory Appl. 90 321-334
[8]  
Yang X.Q.(1996)On vector variational inequalities J. Optim. Theory Appl. 89 749-769
[9]  
Chen G.Y.(1996)On vector quasivariational inequalities J. Math. Anal. Appl. 203 626-638
[10]  
Yang X.Q.(1997)On the generalized vector variational inequality problem J. Math. Anal. Appl. 206 42-58