Kolmogorov’s ε-Entropy of Bounded Sets in Discrete Spaces and Attractors of Dissipative Lattice Systems

被引:0
作者
Sheng Fan Zhou
Qiu Li Jia
Wei Shi
机构
[1] Shanghai Normal University,Department of Applied Mathematics
[2] ,Department of Mathematics and Physics
[3] He’nan University of Science and Technology,Department of Mathematics
[4] Shanghai University,undefined
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
Kolmogorov’s ; -entropy; discrete space; dissipative lattice system; global attractor; 34A35; 34C35; 58F10;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain an estimate of the upper bound for Kolmogorov’s ε-entropy for the bounded sets with small “tail” in discrete spaces, then we present a sufficient condition for the existence of a global attractor for dissipative lattice systems in a reflexive Banach discrete space and establish an upper bound of Kolmogorov’s ε-entropy of the global attractor for lattice systems.
引用
收藏
相关论文
共 19 条
  • [1] Kolmogorov undefined(1959)undefined Uspekhi Mat. Nauk. 14 2:3-undefined
  • [2] Chate undefined(1997)undefined Physica D 103 1-undefined
  • [3] Erneux undefined(1993)undefined Phys. D 67 237-undefined
  • [4] Chua undefined(1993)undefined IEEE Trans. Circuits Systems 40 147-undefined
  • [5] Cahn undefined(1960)undefined Acta Metallurgica 8 554-undefined
  • [6] Bell undefined(1984)undefined Quart. Appl. Math. 42 1-undefined
  • [7] Carrol undefined(1990)undefined Phys. Rev. Lett. 64 821-undefined
  • [8] Bunimovich undefined(1988)undefined Nonlinearity 1 491-undefined
  • [9] Afraimovich undefined(1993)undefined Nonlinearity 6 429-undefined
  • [10] Afraimovich undefined(1995)undefined Japan, J. Indust. Appl. Math. 12 1-undefined