Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries

被引:0
作者
Anatoly Meshkov
Vladimir Sokolov
机构
[1] Orel State University,
[2] Landau Institute for Theoretical Physics,undefined
来源
Letters in Mathematical Physics | 2014年 / 104卷
关键词
37K10; 37K35; 35Q53; higher symmetry; exact integrability; hyperbolic equation;
D O I
暂无
中图分类号
学科分类号
摘要
The complete lists of vector hyperbolic equations on the sphere that have integrable third-order vector isotropic and anisotropic symmetries are presented. Several new integrable hyperbolic vector models are found. By their integrability, we mean the existence of vector Bäcklund transformations depending on a parameter. For all new equations, such transformations are constructed.
引用
收藏
页码:341 / 360
页数:19
相关论文
共 30 条
  • [1] Sokolov V.V.(1984)Classification of integrable evolution equations Sov. Sci. Rev. Sect. C. 4 221-280
  • [2] Shabat A.B.(1987)The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems Russ. Math. Surv. 42 1-63
  • [3] Mikhailov A.V.(1982)Evolution equations with nontrivial conservation laws Funct. Anal. Appl. 16 86-87
  • [4] Shabat A.B.(2012)Integrable evolution equations with the constant separant Ufa Math. J. 4 104-154
  • [5] Yamilov R.I.(1979)Klein–Gordon equations with a nontrivial group Sov. Phys. Dokl. 247 1103-1107
  • [6] Svinolupov S.I.(1984)Systems of equations Sov. Math. Dokl. 30 23-26
  • [7] Sokolov V.V.(2001) =  Russ. Math. Surv. 56 63-106
  • [8] Meshkov A.G.(2011)( Theor. Math. Phys. 166 43-57
  • [9] Sokolov V.V.(2002), Commun. Math. Phys. 232 1-18
  • [10] Zhiber A.V.(1980)), Funct. Anal. Appl. 14 79-80