New Results on Codes with Covering Radius 1 and Minimum Distance 2

被引:0
作者
Patric R. J. Östergård
Jörn Quistorff
Alfred Wassermann
机构
[1] Helsinki University of Technology,Department of Electrical and Communications Engineering
[2] Helsinki University of Technology,Department of Mathematics
[3] University of Bayreuth,undefined
来源
Designs, Codes and Cryptography | 2005年 / 35卷
关键词
Data Structure; Information Theory; Minimum Distance; Discrete Geometry; Additional Requirement;
D O I
暂无
中图分类号
学科分类号
摘要
The minimal cardinality of a q-ary code of length n and covering radius at most R is denoted by Kq(n, R); if we have the additional requirement that the minimum distance be at least d, it is denoted by Kq(n, R, d). Obviously, Kq(n, R, d) ≥ Kq(n, R). In this paper, we study instances for which Kq(n,1,2) > Kq(n, 1) and, in particular, determine K4(4,1,2)=28 > 24=K4(4,1).
引用
收藏
页码:241 / 250
页数:9
相关论文
共 28 条
[21]  
Horton J. D.(undefined)undefined undefined undefined undefined-undefined
[22]  
Kalbfleisch J. G.(undefined)undefined undefined undefined undefined-undefined
[23]  
Stanton R. G.(undefined)undefined undefined undefined undefined-undefined
[24]  
Kalbfleisch J. G.(undefined)undefined undefined undefined undefined-undefined
[25]  
Stanton R. G.(undefined)undefined undefined undefined undefined-undefined
[26]  
Kalbfleisch J. G.(undefined)undefined undefined undefined undefined-undefined
[27]  
Wassermann A.(undefined)undefined undefined undefined undefined-undefined
[28]  
Wassermann A(undefined)undefined undefined undefined undefined-undefined